

Document Title:	VIRGO Module SCA-35 Test Repor
------------------------	--------------------------------

Document Number: VIS-TRE-ATC-06032-1035

Issue: Draft 0.1

Date:

19 November 2004

Document	Naidu Bezawada	Signature	
Prepared By:	Electronics Engineer	and Date:	
Document	Mel Strachan	Signature	
Approved By:	ATC Project Manager	and Date:	
Document	Gavin Dalton	Signature	
Reviewed By:	IR Camera Project Scientist	And Date:	
Document	Martin Caldwell	Signature	
Reviewed By:	IR Camera Systems Engineer	and Date:	
Document	Kim Ward	Signatures	
Released By:	IR Camera Project Manager	and Date:	

The information contained in this document is strictly confidential and is intended for the addressee only. The unauthorised use, disclosure, copying, alteration or distribution of this document is strictly prohibited and may be unlawful.

University of Durham Astronomical Instrumentation Group Rutherford Appleton Laboratory

Test Report VIRGO-SCA-35.doc

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 2 of 33
Author:	Naidu Bezawada

Change Record

Issue	Date	Section(s) Affected	Description of Change/Change Request Reference/Remarks
Draft 0.1	19/11/04	All	New document

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 3 of 33
Author:	Naidu Bezawada

TABLE OF CONTENTS

CHA	ANGE RECORD	2
1.	PERFORMANCE SUMMARY	4
2.	DC UNIFORMITY	5
3.	SYSTEM GAIN AND CONVERSION GAIN	7
4.	READ NOISE	12
5.	DARK GENERATION	15
6.	QUANTUM EFFICIENCY	17
7.	PERSISTENCE	23
8.	INOPERABLE PIXELS	26
9.	TEMPORAL STABILITY	27
10.	COSMETICS	29
11.	READ BACK VOLTAGES	31
12.	CONCLUSION	33

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 4 of 33
Author:	Naidu Bezawada

1. PERFORMANCE SUMMARY

Module Number # Operating temperature Pixel rate Outputs Frame readout time	e = =	VM301-35-SC 72K 294 kHz 16 1.001s	ĊA
Detector bias: VRstUc VnUc VDetCom	= =	0.0V 0.5V 0.5V	(0.7V) (0.7V)
Mean DC level	=	3.285V @ 0.5 3.299V @ 0.7	V V
Detector transimpedat (0.5V)	nce	$= 4.387 \mu V/e^{-1}$ = 4.634 $\mu V/e^{-1}$	(20 - 70% of full well) (up to ~ 20% of full well)
Dark generation Operability	=	0.80e ⁻ /s/pixel (97.67% (>0, <	(mean) $@0.5V$ detector bias $8e^{-1}/s$)
Read noise Temporal Pixel-to-pixel	=	18.7e ⁻ (rms) 21.4e ⁻ (rms)	
Full well (ke ⁻)	=	87ke ⁻ (@ 0.5V 120ke ⁻ (@ 0.7	() V)
Non-linearity	=	3.5% @0.5V,	5.2% @ 0.7V

QE*	Mean (%)	Sigma	Non-Uniformity (sigma / mean)
J-Band	92.4	4.5	4.9%
H-Band	96.3	4.6	4.8%
K-Band	90.7	3.9	4.3%

* - Includes only operable pixels

Persistence signal = $7.8e^{-7}$

Total Pixel operability = 97.3%

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 5 of 33
Author:	Naidu Bezawada

2. DC Uniformity

DC Uniformity (0.7V detector bias)

Mean DC @0.5V = 3.285V, Sigma = 0.039V

Mean DC @0.7V = 3.299V, Sigma = 0.064V

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 6 of 33
Author:	Naidu Bezawada

DC Uniformity (Histogram)

Mean DC = 3.299V, Sigma = 0.064V

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 7 of 33
Author:	Naidu Bezawada

3. System gain and conversion gain

System gain (20 -70% of full well) - 0.7V bias

System gain @ 0.5V bias = $5.197e^{-}$ ADU System gain @ 0.7V bias = $4.864e^{-}$ ADU

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 8 of 33
Author:	Naidu Bezawada

System gain (up to $\sim 20\%$ full well) – 0.7V bias

System gain @ 0.5V bias = $4.921e^{-}$ ADU System gain @ 0.7V bias = $4.559e^{-}$ ADU

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 9 of 33
Author:	Naidu Bezawada

Transimpedance conversion gain vs. signal level (0.7V)

Transimpedance conversion gain @ 0.5V bias	= $4.387\mu V/e^{-}$ (20 – 70% full well) = $4.634\mu V/e^{-}$ (up to ~20% full well)
Transimpedance conversion gain @ 0.7V bias	$= 4.688 \mu V/e^{-} (20 - 70\% \text{ full well})$

Rutherford Appleton Laboratory

 $= 5.0 \mu V/e^{-1}$ (up to $\sim 20\%$ full well)

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 10 of 33
Author:	Naidu Bezawada

Linearity and full well

Photon transfer – full well obtained from noise roll-over in the plot (0.7V)

Full well (a) 0.5V bias = $87ke^{-1}$

Full well (a) 0.7V bias = $120ke^{-1}$

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 11 of 33
Author:	Naidu Bezawada

Non-linearity plot (0.7V)

Estimated from 10 - 80% of saturation levels

Non-linearity = $\sim 3.5\%$ (0.5V bias) = $\sim 5.2\%$ (0.7V bias)

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 12 of 33
Author:	Naidu Bezawada

4. Read noise

Read noise bitmap (temporal)

Estimated from 10 CDS frames (0.7V) The array mean read noise (temporal) is 17.3e⁻ (rms). Number of pixels >32e⁻ noise is 1.28%.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 13 of 33
Author:	Naidu Bezawada

Read noise histogram (temporal) Obtained from 10 CDS frames with minimum detector integration time

Histogram shows the array mean excluding the pixels $>32e^{-}$ The array mean for all pixels in the frame is 18.7e⁻.

1.28% pixels show read noise >32e.

Pixel-to-pixel read noise (excluding pixels with dark > 8e/s)

Obtained from two subsequent dark frames with minimum detector integration time

Closely agrees with the temporal noise

Read noise measured the 1^{st} output = $18.9e^{-1}$.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 15 of 33
Author:	Naidu Bezawada

5. Dark generation

Dark generation (@ 0.7V detector bias)

Measured after a settling time of ~3hrs (i.e. after adjusting any detector bias voltage)

An average of 10 CDS frames (each with 240 sec. integration time) is used to estimate the mean dark generation. Mean dark generation for the full frame excluding pixels with 0 < darkgeneration > 8e⁻/sec is estimated as 0.81 e⁻/sec/pixel (= 0.46). The pixels in limits are ~97.5%.

Mean dark @0.5V bias = $0.80e^{-1}$ /s/pix with pixels in limits =97.7 % (with VnUc = 0.7V) Mean dark @0.7V bias = $0.81e^{/s/pix}$ with pixels in limits =97.5 % (with VnUc = 0.7V)

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 16 of 33
Author:	Naidu Bezawada

Dark generation bitmap (0.7V detector bias) – mean dark = $0.81e^{-1}/s/pix$. (0 < dark <8) Dark from a region relatively free from hot pixels (in the centre) measured as 0.61e⁻/s/pix.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 17 of 33
Author:	Naidu Bezawada

6. Quantum Efficiency

QE bitmap (J-band) Image stretched between 0.38 and 1.20 limits

Mean = 0.924 Sigma = 0.045

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 18 of 33
Author:	Naidu Bezawada

QE histogram (J-band)

Mean and sigma are obtained from operable pixels

Non-uniformity = 4.9% (for pixels in limits)

Operability = 98.34%

Blackbody temperature:	low	$= 350^{\circ}C$	$(9.83E8 \text{ ph/cm}^2/\text{s})$
	High	$= 380^{\circ}C$	$(2.26E9 \text{ ph/cm}^2/\text{s})$

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 19 of 33
Author:	Naidu Bezawada

QE bitmap (H-band)

Mean = 0.963 Sigma = 0.046

Image stretched between 0.47 and 1.2 limits

Mean and sigma are obtained from operable pixels

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 20 of 33
Author:	Naidu Bezawada

QE histogram (H-band)

Mean and sigma are obtained from operable pixels

Non-uniformity = 4.8% (for pixels in limits)

Operability = 98.31%

Blackbody temperature:	low	= 220°C	$(1.25E9 \text{ ph/cm}^2/\text{s})$
	High	= 250°C	$(3.38E9 \text{ ph/cm}^2/\text{s})$

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 21 of 33
Author:	Naidu Bezawada

QE bitmap in K-band Mean = 0.907Sigma = 0.039

Image stretched between 0.47 and 1.20 limits

Mean and sigma are obtained from operable pixels

QE histogram (K-band)

Mean and sigma are obtained from operable pixels

Non-uniformity = 4.3% (for pixels in limits)

Operability = 98.32%

Blackbody temperature:	low	= 120°C	$(1.36E9 \text{ ph/cm}^2/\text{s})$
	High	= 150°C	$(4.31E9 \text{ ph/cm}^2/\text{s})$

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 23 of 33
Author:	Naidu Bezawada

7. Persistence

Figure shows the histogram of the persistence signal in a 10s dark after a minute after saturation.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 24 of 33
Author:	Naidu Bezawada

Persistence signal in a 10s dark

Figure shows the persistence signal in a 10s dark after 1 minute after saturation with ~200ke⁻ fluence. The detector is continuously read every 10s after saturation and the persistence decay is obtained.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 25 of 33
Author:	Naidu Bezawada

Persistence signal decay

The array mean is 7.8e⁻.

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 26 of 33
Author:	Naidu Bezawada

8. Inoperable Pixels

Inoperable pixels bitmap (white pixels)

Total inoperable pixels = $\sim 2.70\%$

Obtained from dark operability (0 < dark <8e/s), and QE operability in J, H and K bands

About 1.6% of these are in the large area defects Open pixels = 1230

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 27 of 33
Author:	Naidu Bezawada

9. Temporal Stability

Temporal stability (K-band)

Ratio of two identical flats (50% full well) obtained 5 days apart

Flats are divided by one another and a histogram of the resulted frame is shown above. Inoperable pixels (see bitmap above) have been excluded from the measurement.

Temporal stability in J band = 0.73% (~ 50% full well, one day apart)

Temporal stability in H band = 0.59% (~ 50% full well, one day apart)

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 28 of 33
Author:	Naidu Bezawada

Ratio of J to K flat

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 29 of 33
Author:	Naidu Bezawada

10.Cosmetics

Large area defects in a 480 x 420 section

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 30 of 33
Author:	Naidu Bezawada

Large area defect in a 330 x 260 section

Chip-off on top and two small cluster defects in a 360 x 150 section

AR coating is fine

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 31 of 33
Author:	Naidu Bezawada

11.Read back voltages

DC	Name	Value1(V)	Value2(V)	Current(mA)
DC1	vhiReset	3.999	3.979	0.20
DC2	vloReset	0.005	0.005	-
DC3	vIdle	-2.363	-2.344	0.19
DC4	vSlew	-3.999	-3.970	0.29
DC5	vhiRowEn	5.000	4.966	0.34
DC6	vloRowEn	0.996	1.025	0.29
DC7	vCas	2.998	2.993	-
DC8	vpD	3.999	3.970	0.29
DC9	vrstUc	0.005	0.005	-
DC10	vpUc	3.496	3.418	0.78
DC11	vnUc	0.601	0.654	0.53
DC12	vnOut	2.197	2.388	1.91
DC13	vdetCom	0.698	0.698	-
DC14	vpOut	9.741	9.546	1.95
DC15	vBiasRef	3.452	3.447	-

Read back voltages - Cold

DC	Name	Value1(V)	Value2(V)	Current(mA)
DC1	vhiReset	3.999	3.989	0.10
DC2	vloReset	0.005	0.005	-
DC3	vIdle	-2.363	-2.354	-
DC4	vSlew	-3.999	-3.984	0.15
DC5	vhiRowEn	5.005	5.000	-
DC6	vloRowEn	1.001	0.996	-
DC7	vCas	2.998	2.993	-
DC8	vpD	3.999	3.975	0.24
DC9	vrstUc	0.005	0.005	-
DC10	vpUc	3.496	3.428	0.68
DC11	vnUc	0.601	0.654	0.53
DC12	vnOut	2.197	2.378	1.81
DC13	vdetCom	0.698	0.698	-
DC14	vpOut	9.746	9.556	1.90
DC15	vBiasRef	3.452	3.452	-

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 32 of 33
Author:	Naidu Bezawada

Read back voltages – warm (after thermal cycle)

DC	Name	Value1(V)	Value2(V)	Current(mA)
DC1	vhiReset	3.994	3.975	0.19
DC2	vloReset	0.005	0.005	-
DC3	vIdle	-2.363	-2.344	0.19
DC4	vSlew	-3.999	-3.970	0.29
DC5	vhiRowEn	5.000	4.966	0.34
DC6	vloRowEn	0.996	1.025	0.29
DC7	vCas	2.998	2.993	-
DC8	vpD	3.999	3.965	0.34
DC9	vrstUc	0.005	0.005	-
DC10	vpUc	3.491	3.418	0.73
DC11	vnUc	0.601	0.654	0.53
DC12	vnOut	2.197	2.388	1.91
DC13	vdetCom	0.698	0.698	-
DC14	vpOut	9.741	9.541	2.00
DC15	vBiasRef	3.452	3.447	-

Doc. Number:	VIS-TRE-ATC-06032-1035
Date:	19 November 2004
Issue:	Draft 0.1
Page:	Page 33 of 33
Author:	Naidu Bezawada

12.Conclusion

Module#35 shows very good performance except for the three large area defects. The detector has overall operability of 97.3%. Transimpedance conversion gain of 4.39μ V/e⁻ at 0.5V is measured which is slightly different from the RVS value (4.78μ V/e⁻). The conversion gain is estimated both at 0.5V and 0.7V bias and also estimated for low and high signal levels. The low level conversion gains are applied for dark, read noise and persistence. The high signal conversion gain is applied for estimating the full well capacity. Full well of ~87ke⁻ is obtained with 0.5V bias with non-linearity of 3.5%. Full well of ~120ke⁻ is obtained at 0.7V detector bias with non-linearity ~5.2%. The high transimpedance conversion gain corresponds to a less diode junction capacitance and thus low well capacity.

A mean dark generation of $0.81e^{/s/pix}$ is measured for the array at 0.7V ($0.80e^{/s/pix}$ (a) 0.5V) after about of 3 hours settling time. Dark pixel operability is ~97.5% with pixels in limits ($0 < dark < 8e^{/s/pix}$).

High QE's over 90% have been measured in all bands. RVS reported QEs in J (61%), H (80.0%) and K (79%) largely differ from ATC measurements. A note in the RVS data pack says that they had assumed the blackbody emissivity as 98% (different from previous modules?). That could explain some of these large differences.

Temporal read noise of $\sim 17.3e^{-1}$ (rms) is obtained for the entire array while the pixel-to-pixel noise is $\sim 19.8e^{-1}$. RVS have reported the pixel-to-pixel noise in one output (channel-1) as 22.1e⁻¹. ATC measured the pixel-to-pixel noise in the same output as 20.5e⁻¹.

Persistence signal decays below 32e⁻ in about 25s. The array mean persistence signal after a minute after saturation is 7.8e⁻.

This detector shows three large area defects (pixels are non-responsive) which are about 1.6% of total pixels. There is a fence of hot and high responsive pixels around each of these defects spreading few (~6) pixels.

Except for the large area defects, this detector shows very good performance and meets the specifications. High QEs with good uniformity in all bands, low dark generation, low persistence, and low noise make this detector a good science detector.

---000----

