MUSE ETC

Roland Bacon

version 1.0 11-05-03

Inspired from Simon Morris mathcad and Ian Parry excel ETC

version 2.0 8-06-03 Take sky value (no OH) from Hanushik paper add variation of ensquared energy with wavelength, use updated version 1.1 of throughput

version 3.0 02-10-03

Refurbish and simplify the presentation updated version 2.1 of throughput include also bad seeing conditions for AO performances and add effect of MUSE IQE on all PSFs Problem found: we seems to be pessimistic about sky brightness in the blue wrt to ESO ETC

version 3.1 09-10-03

Change z = 0.95 μ m and B=0.44 μ m traditional wavelength to the red and blue limits of MUSE (respectively 0.93 μ m and 0.465 μ m)

version 3.2 11-11-03 Add computation of accuracy needed in sky subtraction

version 3.3 1-12-03

Updated version 20/11/03 of throughput with VLT adaptative secondary AO system, typical curve. Added computation of surface line emission sensitivity.

TABLE OF CONTENT

1. Units and constant

- 2. Useful functions
- 3. Photometric systems

3.1 UBVRI system 3.2 AB system

- 4. Sky brightness
- 5. Atmospheric extinction
- 6. Telescope
- 7. MUSE throughput
 - 7.1 Throughput of MUSE wide-field mode
 - 7.2 Throughput of MUSE high resolution mode

8. MUSE detector

- 9. MUSE spatial and spectral configurations
 - 9.1 MUSE wide-field spatial mode (WF)
 - 9.2 MUSE high spatial resolution mode (HR)
 - 9.3 MUSE spectral configuration
- 10. MUSE spatial PSF
 - 10.1 MUSE spatial PSF in WF mode
 - 10.1.1 Seeing limited, poor seeing conditions
 - 10.1.2 Seeing limited, good seeing conditions
 - 10.1.3 AO Gen I, poor seeing conditions
 - 10.1.4 AO Gen I, good seeing conditions
 - 10.2 MUSE spatial PSF in HR mode
 - 10.2.1 AO Gen II, good seeing conditions
 - 10.3 Number of spatial pixels
- 11. MUSE spectral PSF
 - 11.1 Shape of spectral PSF 11.2 Number of spectral PSF
- 12. Main ETC formula
- 13. ETC parameters
- 14. Limiting surface brightness

14.1 <u>WF mode</u> 14.2 <u>HR mode</u> 15. Limiting flux for an unresolved source 15.1 WF mode 15.1.1 Seeing limited, poor seeing conditions 15.1.1.1 Continuum source 15.1.1.2 Line emission source 15.1.2 Seeing limited, good seeing conditions 15.1.2.1 Continuum source 15.1.2.2 Line emission source 15.1.3 AO Gen I, poor seeing conditions 15.1.3.1 Continuum source 15.1.3.2 Line emission source 15.1.4 AO Gen I, good seeing conditions 15.1.4.1 Continuum source 15.1.4.2 Line emission source 15.2 HR mode 15.2.1 AO Gen II, good seeing conditions . 15.2.1.1 Continuum source 15.2.1.2 Line emission source

16. Accuracy requirements in sky subtraction

1. Units and Constant

Velocity of light in vacuum :=
$$299792458 \cdot \text{m} \cdot \text{s}^{-1}$$

 $\label{eq:Angstroem} \mbox{A} := \mbox{10}^{-\mbox{10}} \cdot \mbox{m} \qquad \mbox{microns} \qquad \mbox{\mu} \mbox{m} := \mbox{10}^{-\mbox{6}} \cdot \mbox{m}$

Planck's constant (h) $hr := 6.6260755 \cdot 10^{-34}$ -joule-sec

phot := 1 $\operatorname{arcsec} := \frac{\operatorname{acg}}{3600}$ $\operatorname{arcmin} :=$	60 deg
---	--------

elec := 1 hour := $3600 \cdot s$

<u>back</u>

2. Define a few useful functions

$$Mean(f, a, b) := \frac{\int_{a}^{b} f(x) dx}{b - a}$$

$$GAUSS(r, \sigma) := \frac{exp\left(\frac{-r^{2}}{2 \cdot \sigma^{2}}\right)}{\sqrt{2 \cdot \pi \cdot \sigma}} \qquad E_{GAUSS}(a, \sigma) := \int_{\frac{-a}{2}}^{\frac{a}{2}} GAUSS(x, \sigma) dx$$

$$FWHM_{GAUSS}(\sigma) := 2\sqrt{2 \cdot \ln(2)} \cdot \sigma$$

$$\sigma_{GAUSS}(FWHM) := \frac{FWHM}{(2\sqrt{2 \cdot \ln(2)})}$$

3. Photometric System

3.1 UBVRIz System

	Be	ssel, 1	979, PASI	P 91, 589	
	(0.36)	١	((7.3788)	
	0.44			7.1804	Magnitude central wavelengths and
	0.55			7.4425	zero points from ESO web site
	0.64			7.6408	en/formulaBook/node12.html
	0.79			7.9115	
λ _b :=	0.95	∙µm	val_Z _b :=	8.1101	
	1.25			8.4989	
	1.65			8.9706	
	2.2			9.4367	
	3.5			10.2649	
	(4.8)	J	l	10.2692	

Central wavelengths to be used

Useful reference wavelength for MUSE

$$\lambda_{\mathsf{B}} \coloneqq 0.465 \cdot \mu \mathsf{m}$$
 $\lambda_{\mathsf{V}} \coloneqq \lambda_{\mathsf{b}_2}$ $\lambda_{\mathsf{R}} \coloneqq \lambda_{\mathsf{b}_3}$ $\lambda_{\mathsf{I}} \coloneqq \lambda_{\mathsf{b}_4}$ $\lambda_{\mathsf{Z}} \coloneqq 0.93 \cdot \mu \mathsf{m}$

Note that B and z wavelength are set to the limit of MUSE wavelength range

 $\text{spline}_Z_b := \text{lspline} \Big(\lambda_b, \text{val}_Z_b \Big) \qquad \qquad \lambda := 0.36 \cdot \mu\text{m}, 0.36 \cdot \mu\text{m} + 0.01 \cdot \mu\text{m}.. 1.25 \cdot \mu\text{m}$

Function to transform magnitude in flux

$Mag2Flux(mag,\lambda) := 10^{-0.4 \cdot mag - Z_{b}(\lambda)} \cdot W \cdot m^{-2} \cdot \mu m^{-1}$
$SurfMag2Flux(mag,\lambda) := 10^{-0.4 \cdot mag - Z_{b}(\lambda)} \cdot W \cdot m^{-2} \cdot \mu m^{-1} \cdot arcsec^{-2}$
$Flux2Mag(F,\lambda) := -2.5 \cdot \left[log \left[\frac{F}{\left(W \cdot m^{-2} \cdot \mu m^{-1} \right)} \right] + Z_{b}(\lambda) \right]$
$Flux2MagSurf(F,\lambda) := Flux2Mag(F,\lambda) - 2.5 \cdot \log[(arcsec)^{2}]$

<u>back</u>

3.2 AB magnitude system

$$\mathsf{Flux2AB}(\mathsf{F}_{\lambda},\lambda) := -2.5 \cdot \log \left[\frac{\mathsf{F}_{\lambda} \cdot \lambda^{2}}{c \cdot \left(\mathsf{erg} \cdot \mathsf{cm}^{-2} \cdot \mathsf{sec}^{-1} \cdot \mathsf{Hz}^{-1} \right)} \right] - 48.60$$

$$\mathsf{AB2Flux}(\mathsf{AB},\lambda) := \frac{10^{-0.4 \cdot (\mathsf{AB}+48.60)}}{\lambda^2} \cdot c \cdot \operatorname{erg} \cdot \operatorname{cm}^{-2} \cdot \operatorname{s}^{-1} \cdot \mathsf{Hz}^{-1}$$

$$\mathsf{Flux2ABSurf}(\mathsf{F}_{\lambda}, \lambda) \coloneqq -2.5 \cdot \log \left[\frac{\mathsf{F}_{\lambda} \cdot \lambda^{2}}{c \cdot \left(\mathsf{erg} \cdot \mathsf{cm}^{-2} \cdot \mathsf{sec}^{-1} \cdot \mathsf{Hz}^{-1} \cdot \mathsf{arcsec}^{-2} \right)} \right] - 48.60$$

$$\mathsf{SurfAB2Flux}(\mathsf{AB},\lambda) := \frac{10^{-0.4 \cdot (\mathsf{AB}+48.60)}}{\lambda^2} \cdot c \cdot \mathsf{erg} \cdot \mathsf{cm}^{-2} \cdot \mathsf{s}^{-1} \cdot \mathsf{Hz}^{-1} \cdot \mathsf{arcsec}^{-2}$$

Test Flux2AB(Mag2Flux(25,
$$\lambda_R$$
), λ_R) = 25.163
SurfAB2Flux(25, λ_R) = 2.657 × 10⁻¹⁹ erg·cm⁻²·s⁻¹·A⁻¹·arcsec⁻²
AB2Flux(25, λ_R) = 2.657 × 10⁻¹⁹ erg·cm⁻²·s⁻¹·A⁻¹

4. Sky brightness

Sky brightness is taken from the Hanuschik paper, it doesnt include the OH lines

$$\lambda_{\text{Sky}} := \begin{pmatrix} 0.44 \\ 0.5 \\ 0.55 \\ 0.65 \\ 0.66 \\ 0.65 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.95 \\ 1.0 \\ 1.025 \end{pmatrix} \cdot \mu \text{m} \quad \text{TabFlux}_{\text{SkyNoOH}} := \begin{pmatrix} 0.1 \\ 0.1 \\ 0.105 \\ 0.095 \\ 0.095 \\ 0.075 \\ 0.075 \\ 0.082 \\ 0.075 \\ 0.082 \\ 0.077 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.1 \\ 0.15 \end{pmatrix} \cdot 10^{-16} \cdot \text{erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2} \cdot \text{A}^{-1} \cdot \text{arcsec}^{-2}$$

 $Spline_Flux_{SkyNoOH} := Ispline(\lambda_{Sky}, TabFlux_{SkyNoOH})$

 $\mathsf{Flux}_{SkyNoOH}(\lambda) := \mathsf{interp}\big(\mathsf{Spline}_{Flux}_{SkyNoOH}, \lambda_{Sky}, \mathsf{TabFlux}_{SkyNoOH}, \lambda\big)$

 $\lambda := 0.44{\cdot}\mu\text{m}, 0.47{\cdot}\mu\text{m}..\ 1.025{\cdot}\mu\text{m}$

Checking	$Flux2ABSurf(Flux_{SkyNoOH}(\lambda_B), \lambda_B) = 21.766$	ESO ETC value 22.7
	$Flux2ABSurf(Flux_{SkyNoOH}(\lambda_V), \lambda_V) = 21.337$	ESO ETC value 21.8
	$Flux2MagSurf(Flux_{SkyNoOH}(\lambda_R), \lambda_R) = 21.109$	ESO ETC value 20.9
	$Flux2MagSurf(Flux_{SkyNoOH}(\lambda_{I}),\lambda_{I}) = 20.441$	ESO ETC value 19.9
	$Flux2MagSurf(Flux_{SkyNoOH}(\lambda_{z}),\lambda_{z}) = 20.378$	ESO ETC value 18.8

Note the difference in the red is fully explained by the OH suppression. There is also a large difference in the blue ... unexplained at the moment ... TBC

5. Atmospheric extinction

6. Telescope Effective Area

 $\mathsf{Area}_{\mathsf{VLT}} \coloneqq \mathsf{485425.1} \cdot \mathsf{cm}^2 \qquad \mathsf{From ESO UVES ETC}$

Note: Useful surface is only $\frac{\text{Area}_{\text{VLT}}}{\pi \cdot (4 \cdot \text{m})^2} = 0.966$

7. MUSE throughput

7.1 MUSE throughput of WF mode

table muse throughput := .			
		0	1
	0	0.46	0.0784
	1	0.48	0.1217
	2	0.5	0.1681
	3	0.52	0.2092
	4	0.54	0.2452
	5	0.56	0.273
	6	0.58	0.2923
	7	0.585	0.2973
	8	0.59	0.3012
	9	0.595	0.3046

Total throughput of MUSE, excluding atmosphere, version 20/11/03 Typical curve with Adaptive Secondary

 $\lambda_table := \mu m \cdot table_muse_throughput \stackrel{\langle 0 \rangle}{}$

val_muse_throughput := table_muse_throughput $\overset{\langle 1 \rangle}{}$

 $T_{MUSE}(\lambda) := linterp(\lambda_table, val_muse_throughput, \lambda)$

 $\lambda_{min} := 0.465 \cdot \mu m \qquad \lambda_{ma}$

 $\lambda_{max} := 0.93 \cdot \mu m$

 $Mean(T_{MUSE}, \lambda_{min}, \lambda_{max}) = 0.239$

 $\boldsymbol{\lambda} \coloneqq \boldsymbol{\lambda}_{min}, \boldsymbol{\lambda}_{min} + 0.001 {\cdot} \boldsymbol{\mu} m..\, \boldsymbol{\lambda}_{max}$

7.2 MUSE throughput of HR mode

8. MUSE CCD characteristics

 $Npix_{CCD} := 4096$

9. MUSE spatial and spectral configurations

9.1 MUSE wide-field spatial mode

 $\Delta_{WFspa} := 0.2 \cdot arcsec$

9.2 MUSE high spatial resolution mode

 $\Delta_{\text{HRspa}} := 0.025 \cdot \text{arcsec}$

9.3 MUSE Spectral characteristics

λ_{min} := 0.465·µm

 $\lambda_{max} := 0.93 \cdot \mu m$

 $\Delta_{\text{spec}} \coloneqq \frac{\left(\lambda_{\text{max}} - \lambda_{\text{min}}\right)}{\text{Npix}_{\text{CCD}}}$

 $\Delta_{\text{spec}} = 1.135 \,\text{A} \qquad \lambda \coloneqq \lambda_{\text{min}}, \lambda_{\text{min}} + \Delta_{\text{spec}}..\lambda_{\text{max}}$

10. MUSE Spatial PSF

10.1 MUSE spatial PSF in WF mode

10.1.1 Seeing limited, poor seeing conditions

TabEEnoaonor :=								
μοοι		0	1	2	3	4	5	6
	0	0.2	0.0303	0.0332	0.0344	0.0394	0.0421	0.04
	1	0.4	0.1087	0.1174	0.1257	0.1345	0.1415	0.1525
	2	0.6	0.2251	0.2412	0.2529	0.2724	0.2848	0.2926
	3	0.8	0.3566	0.3725	0.3915	0.4109	0.4254	0.4377
	4	1	0.4853	0.504	0.5281	0.546	0.5613	0.5764
	5	1.2	0.5954	0.6133	0.6376	0.6514	0.6713	0.6795
	6	1.4	0.6903	0.7062	0.7244	0.7385	0.7496	0.7576
	7	1.6	0.7653	0.7778	0.7904	0.7998	0.8115	0.8187
	8	1.8	0.8208	0.8295	0.8394	0.8475	0.8535	0.8593
	9	2	0.8644	0.8698	0.8755	0.882	0.8861	0.8907

i := 0..18

Note that MUSE IQE is now included in ensquared energy

$$\begin{split} \text{EE}_{i} &:= \text{submatrix} \Big(\text{TabEEnoao}_{\text{poor}}, i, i, 1, 6 \Big)^{\text{T}} \\ \lambda_{\text{EE}} &:= \begin{pmatrix} 0.465 \\ 0.55 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.93 \end{pmatrix} \cdot \mu \text{m} \\ D_{\text{EE}_{i}} &:= \text{TabEEnoao}_{\text{poor}_{i,0}} \\ \text{k} &:= 0..5 \\ \text{T}_{k} &:= \text{cspline} \Big(\lambda_{\text{EE}}, \text{EE}_{k} \Big) \end{split}$$

 $\mathsf{EEnoao}_{poor}(\lambda,k) := \mathsf{interp}\big(\mathsf{T}_{k-1},\lambda_{\mathsf{EE}},\mathsf{EE}_{k-1},\lambda\big)$

TabEEnoaogood :=								
yuuu		0	1	2	3	4	5	6
	0	0.2	0.067	0.0732	0.0757	0.0859	0.0913	0.0868
	1	0.4	0.2249	0.2409	0.2557	0.2709	0.2824	0.3006
	2	0.6	0.422	0.4458	0.4617	0.4879	0.5033	0.5125
	3	0.8	0.598	0.6155	0.6351	0.6541	0.6672	0.678
	4	1	0.7295	0.7445	0.7627	0.7749	0.7848	0.7944
	5	1.2	0.8157	0.8261	0.8397	0.8464	0.8564	0.8598
	6	1.4	0.8739	0.8805	0.888	0.8933	0.8972	0.8999
	7	1.6	0.9112	0.9149	0.9185	0.921	0.9247	0.9267
	8	1.8	0.9348	0.9363	0.9385	0.9403	0.9415	0.943
	9	2	0.9516	0.9516	0.9521	0.9533	0.9539	0.9549

10.1.2 Seeing limited, good seeing conditions

i := 0..18

j := 1..6

Note that MUSE IQE is now included in ensquared energy

$$\mathsf{EE}_{i} \coloneqq \mathsf{submatrix} \Big(\mathsf{TabEEnoao}_{good}, i, i, 1, 6 \Big)^{\mathsf{T}}$$

$$\lambda_{\text{EE}} := \begin{pmatrix} 0.465 \\ 0.55 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.93 \end{pmatrix} \cdot \mu \text{m}$$

$$D_{EE_i} := TabEEnoao_{good_{i,0}}$$

k := 0..5

$$T_{k} := cspline(\lambda_{EE}, EE_{k})$$

 $\mathsf{EEnoao}_{good}(\lambda,k) := \mathsf{interp} \Big(\mathsf{T}_{k-1}^{}, \lambda_{\mathsf{EE}}^{}, \mathsf{EE}_{k-1}^{}, \lambda \Big)$

TabEEgenlpoor :=									
5 puur		0	1	2	3	4	5	6	7
	0	1	0.1	0.0554	0.0653	0.0734	0.0894	0.1009	0.1003
	1	2	0.2	0.1839	0.2091	0.2365	0.2647	0.2893	0.3169
	2	3	0.3	0.343	0.3777	0.4089	0.4478	0.4769	0.4968
	3	4	0.4	0.4897	0.5182	0.5502	0.5804	0.6046	0.6233
	4	5	0.5	0.6089	0.633	0.6607	0.6818	0.6998	0.715
	5	6	0.6	0.6973	0.7152	0.7369	0.7504	0.7667	0.7746
	6	7	0.7	0.7665	0.7789	0.7929	0.8037	0.8123	0.8184
	7	8	0.8	0.8182	0.826	0.8343	0.8408	0.8486	0.8535
	8	9	0.9	0.8558	0.8598	0.8655	0.8705	0.8744	0.8782
	9	10	1	0.8857	0.8869	0.8894	0.8932	0.8957	0.8988

10.1.3 AO Gen I, poor seeing conditions

Note that MUSE IQE is now included in ensquared energy

$$EE_{i} := submatrix (TabEEgenl_{poor}, i, i, 1, 6)^{T}$$

$$\lambda_{\mathsf{EE}} := \begin{pmatrix} 0.465 \\ 0.55 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.93 \end{pmatrix} \cdot \mu \mathsf{m}$$

 $\mathsf{D}_{\mathsf{EE}_{\mathsf{i}}} \coloneqq \mathsf{TabEEgenl}_{\mathsf{poor}_{\mathsf{i}},0}$

k := 0..5

$$T_{k} := cspline(\lambda_{EE}, EE_{k})$$

 $\mathsf{EEgenl}_{poor}(\lambda,k) := \mathsf{interp} \Big(\mathsf{T}_{k-1},\lambda_{\mathsf{EE}},\mathsf{EE}_{k-1},\lambda\Big)$

TabEEgenlagood :=								
o good		0	1	2	3	4	5	6
	0	0.2	0.1151	0.1325	0.1442	0.1688	0.1839	0.1789
	1	0.4	0.3384	0.3732	0.4072	0.4393	0.4647	0.4939
	2	0.6	0.5479	0.5828	0.6109	0.6447	0.6678	0.6828
	3	0.8	0.6927	0.7134	0.7353	0.7551	0.7703	0.7819
	4	1	0.7861	0.7996	0.8147	0.8256	0.8346	0.8426
	5	1.2	0.8448	0.8529	0.8631	0.8686	0.8762	0.8794
	6	1.4	0.8857	0.8904	0.8959	0.8999	0.9031	0.9054
	7	1.6	0.9139	0.9163	0.9189	0.9208	0.9238	0.9255
	8	1.8	0.9333	0.9341	0.9356	0.937	0.938	0.9393
	9	2	0.9483	0.9479	0.9481	0.9491	0.9495	0.9505

10.1.4 AO Gen I, good seeing conditions

Note that MUSE IQE is now included in ensquared energy

 $EE_{i} := submatrix(TabEEgenl_{good}, i, i, 1, 6)^{T}$

$$\lambda_{\mathsf{EE}} := \begin{pmatrix} 0.465 \\ 0.55 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.93 \end{pmatrix} \cdot \mu \mathsf{m}$$

 $\mathsf{D}_{\mathsf{EE}_{\mathsf{i}}} \coloneqq \mathsf{TabEEgenl}_{\mathsf{good}_{\mathsf{i},0}}$

k := 0..5

$$T_{k} := cspline(\lambda_{EE}, EE_{k})$$

$$\mathsf{EEgenl}_{\mathsf{good}}(\lambda,\mathsf{k}) := \mathsf{interp}\left(\mathsf{T}_{\mathsf{k}-1},\lambda_{\mathsf{EE}},\mathsf{EE}_{\mathsf{k}-1},\lambda\right)$$

back

10.2 MUSE spatial PSF in HR mode

FabEEgenllaged :=								
yuuu		0	1	2	3	4	5	6
	0	0.025	0.0735	0.1362	0.2195	0.3019	0.1954	0.2321
	1	0.05	0.1848	0.2586	0.3131	0.4066	0.4835	0.4297
	2	0.075	0.2183	0.3111	0.4008	0.4611	0.5327	0.5782
	3	0.1	0.2468	0.3357	0.4319	0.505	0.557	0.6007
	4	0.125	0.2628	0.3537	0.4422	0.5169	0.5721	0.6152
	5	0.15	0.2787	0.3699	0.4597	0.5356	0.5931	0.6263
	6	0.175	0.3032	0.3858	0.4753	0.5436	0.6014	0.6355
	7	0.2	0.3201	0.4018	0.4902	0.5581	0.6089	0.6508
	8	0.225	0.3375	0.4182	0.4976	0.565	0.6224	0.6574
	9	0.25	0.3642	0.4349	0.5126	0.5786	0.6288	0.6636

i := 0.. 18

Note that MUSE IQE is now included in ensquared energy

j := 1..6

$$EE_{i} := submatrix \left(TabEEgenII_{good}, i, i, 1, 6 \right)^{T}$$
$$\lambda_{EE} := \begin{pmatrix} 0.465 \\ 0.55 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.93 \end{pmatrix} \cdot \mu m$$

 $D_{EE_i} := TabEEgenII_{good_{i,0}}$

k := 0..5

$$T_k := cspline(\lambda_{EE}, EE_k)$$

 $\mathsf{EEgenII}_{good}(\lambda,k) := \mathsf{interp} \Big(\mathsf{T}_{k-1},\lambda_{\mathsf{EE}},\mathsf{EE}_{k-1},\lambda\Big)$

10.3 Number of spatial pixels

In the case of unresolved objects and in good seeing conditions we will sum up 3x3 spatial pixels to recover a fraction of the object flux, this correspond to 0.6x0.6 arcsec² in WF mode and 0.075x0.075 arcsec² in HR mode

^kspa_good := 3

$EEnoao_{good}(\lambda_{V},k_{spa}_{good}) = 0.446$	$EEnoao_{good}(\lambda_{I},k_{spa}_{good}) = 0.496$
$EEgenI_{good}(\lambda_{V},k_{spa_good}) = 0.583$	$EEgenl_{good}\!\!\left(\!\lambda_{I},k_{spa_good}\right) = 0.655$
$EEgenII_{good}(\lambda_{V},k_{spa}_{good}) = 0.311$	$EEgenII_{good}(\lambda_{I},k_{spa}_{good}) = 0.489$

In the case of unresolved objects and in poor seeing conditions we will sum up 4x4 spatial pixels to recover a fraction of the object flux, this correspond to 0.8x0.8 arcsec² in WF mode and 0.1x0.1 arcsec² in HR mode

Kspa_poor :=

$EEnoao_{poor}\left(\lambda_{V},k_{spa_poor}\right) = 0.373$	$EEnoao_{poor}(\lambda_{I},k_{spa}_{poor}) = 0.417$
$EEgenI_{poor}\big(\lambda_{V},k_{spa_poor}\big) = 0.49$	$EEgenl_{poor} \Big(\lambda_{I}, k_{spa}_{poor} \Big) = 0.563$

Note that this choice is somewhat arbitrary. It is a trade between S/N and spatial resolution. Optimum summation should allow increase of the S/N while keeping the spatial resolution.

<u>back</u>

11. MUSE spectral PSF

11.1 Shape of spectral PSF

The spectral PSF is assumed to be Gaussian with 2*pixels FWHM

 $\mathsf{R}_{Spec}(\lambda) := \frac{\lambda}{\mathsf{FWHM}_{Spec}}$ $\mathsf{FWHM}_{\mathsf{spec}} := 2 \cdot \Delta_{\mathsf{spec}}$ $R_{\min} := R_{\text{spec}}(\lambda_{\min})$ 4500 $R_{max} := R_{spec}(\lambda_{max})$ 3500 $R_{spec}(\lambda)$ $\mathsf{R}_{\mathsf{min}} = 2.048 \times 10^3$ 2500 $R_{\rm max} = 4.096 \times 10^3$ 1500 L 0.4 0.5 0.6 0.7 0.8 0.9 1 λ μm $\mathsf{R}_{\text{mean}} \coloneqq \frac{\mathsf{R}_{\min} + \mathsf{R}_{\max}}{2}$ $R_{mean} = 3.072 \times 10^3$

Fraction of energy enclosed within n pixels :

FracE_{spec}(n) := E_{GAUSS}(n, $\sigma_{GAUSS}(2)$) i := 2...4 FracE_{spec}(i) = 0.761 0.923 0.981

<u>back</u>

Low spectral resolution is obtained after summation of N spectral pixels

N_{sumspec} := 10

$$\Delta_{\text{lowspec}} := N_{\text{sumspec}} \cdot \Delta_{\text{spec}} \quad \Delta_{\text{lowspec}} = 11.353 \text{ A}$$

$$R_{lowspec}(\lambda) := \frac{\lambda}{2 \cdot \Delta_{lowspec}}$$

$$R_{lowmin} := R_{lowspec}(\lambda_{min}) \qquad \boxed{R_{lowmin} = 204.8}$$

$$R_{lowmax} := R_{lowspec}(\lambda_{max}) \qquad \boxed{R_{lowmax} = 409.6}$$

$$R_{lowmean} := \frac{R_{lowmin} + R_{lowmax}}{2} \qquad \boxed{R_{lowmean} = 307.2}$$

11.2 Number of spectral pixels

To recover major party of the fllux of an emission line we sum over 3 pixels in the spectral direction

k_{spec} := 3

 $FracE_{spec}(k_{spec}) = 0.923$

Main ETC Formula

Signal to Noise SN

$$SN(F_{O}, n, t, F_{S}, RN, DC, K_{O}, K_{S}, K_{RN}, K_{DC}) := \sqrt{n} \cdot K_{O} \cdot F_{O} \cdot t \cdot \left(\begin{array}{c} K_{O} \cdot F_{O} \cdot t + K_{S} \cdot F_{S} \cdot t \dots \\ + K_{RN} \cdot RN^{2} + K_{DC} \cdot DC \cdot t \end{array} \right)^{\frac{-1}{2}}$$

Object Flux F_O

$$F_{O}(SN, n, t, F_{S}, RN, DC, K_{O}, K_{S}, K_{RN}, K_{DC}) := \begin{vmatrix} a \leftarrow n \left(\frac{K_{O} \cdot t}{SN}\right)^{2} \\ b \leftarrow K_{O} \cdot t \\ c \leftarrow K_{S} \cdot F_{S} \cdot t + K_{DC} \cdot DC \cdot t + K_{RN} \cdot RN^{2} \\ \frac{b + \sqrt{b^{2} + 4 \cdot a \cdot c}}{2 \cdot a} \end{vmatrix}$$

Integration time t

$$t(SN, n, F_{O}, F_{S}, RN, DC, K_{O}, K_{S}, K_{RN}, K_{DC}) := \begin{cases} a \leftarrow n \left(\frac{K_{O} \cdot F_{O}}{SN}\right)^{2} \\ b \leftarrow K_{O} \cdot F_{O} + K_{S} \cdot F_{S} + K_{DC} \cdot DC \\ c \leftarrow K_{RN} \cdot RN^{2} \\ \frac{b + \sqrt{b^{2} + 4 \cdot a \cdot c}}{2 \cdot a} \end{cases}$$

Where ${\rm F}_{0} \text{ is the Object Flux (erg s^{-1} \cdot {\rm cm}^{-2})}$

if it is a surface brightness, flux should be in $\operatorname{arcsec}^{-2}$

if it is a continuum source, flux should be in $\mathrm{A}^{\!-1}$

The coefficient ${\rm K}_{\rm O}$ transform the object flux in photons per second

$$\mathsf{K}_{\mathsf{O}}(\mathsf{f}_{\mathsf{S}},\mathsf{f}_{\mathsf{a}},\Delta_{\mathsf{S}},\Delta_{\mathsf{a}},\lambda,\mathsf{A}_{\mathsf{m}}) \coloneqq \mathsf{f}_{\mathsf{S}}\cdot\Delta_{\mathsf{S}}\cdot\mathsf{f}_{\mathsf{a}}\cdot\Delta_{\mathsf{a}}^{-2}\cdot\mathsf{T}_{\mathsf{MUSE}}(\lambda)\cdot\mathsf{Area}_{\mathsf{VLT}}\cdot\mathsf{Extinct}(\lambda,\mathsf{A}_{\mathsf{m}})\cdot\frac{\lambda}{\mathsf{hr}\cdot\mathsf{c}}$$

Where f_s is the fraction of total flux enclosed in a spectral bin

and \mathbf{f}_{a} is the fraction of total flux enclosed in a spatial bin

and Δ_s is the size of a spectral bin

and Δ_a is the linear size of a spatial bin in arcsec

and λ is the wavelength

and ${\rm A}_{\rm m}$ is the airmass

and ${\rm T}_{\mbox{MUSE}}$ is the MUSE+VLT total throughput

and Area_{VIT} is the effective collective area of VLT primary mirror

- and Extinct is the extinction absorption coefficient at Paranal
- Note that when the flux is a flat continuum source (flux per A) f_S must be set to 1 and Δ_S to the size of the spectral bin
- and when the flux is an emission source (flux not per A) f_S must be set to the flux fraction enclosed in the bin and Δ_S to 1
- Note that when the flux is a surface brightness source (flux per arcsec²) f_a must be set to 1 and Δ_a to the size of the spectral bin
- and when the flux is a total flux (flux <u>not</u> per arcsec²) f_a must be set to the flux fraction enclosed in the bin and Δ_a to 1

The coefficient ${\rm K}_S$ transform the sky flux in photons per second

$$\mathsf{K}_{\mathsf{S}}(\Delta_{\mathsf{S}}, \Delta_{\mathsf{a}}, \lambda) := \Delta_{\mathsf{S}} \cdot \Delta_{\mathsf{a}}^{2} \cdot \mathsf{T}_{\mathsf{MUSE}}(\lambda) \cdot \mathsf{Area}_{\mathsf{VLT}} \cdot \frac{\lambda}{\mathsf{hr} \cdot \mathsf{c}}$$

The coefficient $K_{\mbox{RN}}$ is the number of summed bin

The coefficient K_{DC} is the number of summed pixels

Noise Statistics

$$\begin{split} \text{FNoise} & \left(\mathsf{F}_{O},\mathsf{n},\mathsf{t},\mathsf{F}_{S},\mathsf{RN},\mathsf{DC},\mathsf{K}_{O},\mathsf{K}_{S},\mathsf{K}_{\mathsf{RN}},\mathsf{K}_{\mathsf{DC}} \right) \coloneqq \\ & \mathsf{V}_{O} \leftarrow \mathsf{K}_{O}\cdot\mathsf{F}_{O}\cdot\mathsf{n}\cdot\mathsf{t} \\ & \mathsf{V}_{S} \leftarrow \mathsf{K}_{S}\cdot\mathsf{F}_{S}\cdot\mathsf{n}\cdot\mathsf{t} \\ & \mathsf{V}_{\mathsf{RN}} \leftarrow \mathsf{n}\cdot\mathsf{K}_{\mathsf{RN}}\cdot\mathsf{RN}^{2} \\ & \mathsf{V}_{\mathsf{DC}} \leftarrow \mathsf{n}\cdot\mathsf{K}_{\mathsf{DC}}\cdot\mathsf{DC}\cdot\mathsf{t} \\ & \mathsf{V}_{\mathsf{CCD}} \leftarrow \mathsf{V}_{\mathsf{RN}} + \mathsf{V}_{\mathsf{DC}} \\ & \mathsf{V}_{\mathsf{Tot}} \leftarrow \mathsf{V}_{O} + \mathsf{V}_{S} + \mathsf{V}_{\mathsf{CCD}} \\ & \left(\begin{array}{c} \frac{\mathsf{V}_{O}}{\mathsf{V}_{\mathsf{Tot}}} \\ \\ \frac{\mathsf{V}_{\mathsf{RN}}}{\mathsf{V}_{\mathsf{Tot}}} \\ \\ \frac{\mathsf{V}_{\mathsf{DC}}}{\mathsf{V}_{\mathsf{Tot}}} \\ \\ \\ \frac{\mathsf{V}_{\mathsf{DC}}}{\mathsf{V}_{\mathsf{Tot}}} \\ \\ \\ \frac{\mathsf{V}_{\mathsf{CCD}}}{\mathsf{V}_{\mathsf{Tot}}} \\ \end{array} \right) \end{split}$$

This function give the fraction of noise due to object (line 1), sky (line 2), readout (line 3), dark current (line 4), detector (ie readout + drak current, line 5)

13. ETC parameters

SN _{lim} := 5	Signal to Noise
t _{exp} := 1∙hour	Exposure time
n _{exp} := 80	Number of summed exposures
AM := 1	Air mass of observations
F _{Sky} (λ) := Flux _{SkyN}	$_{\rm loOH}(\lambda)$ Sky flux is taken outside OH lines

14. Limiting surface brightness

Estimation of limiting surface brightness for a continuum source with flat spectra. The computation is done by spectral and spatial pixels.

14.1 WF mode

<u>back</u>

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}} \Big(1, 1, \Delta_{\mathsf{spec}}, \Delta_{\mathsf{WFspa}}, \lambda, \mathsf{AM} \Big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}} \Big(\Delta_{\mathsf{spec}}, \Delta_{\mathsf{WFspa}}, \lambda \Big) \\ & \mathsf{K}_{\mathsf{RN}} := 1 \end{split}$$

 $K_{DC} := 1$

 $\mathsf{LimSurfFWF}(\lambda) := \mathsf{F}_{O}\!\!\left(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\right)$

<u>back</u>

i := 0..4

 $\mathsf{LimMagSurfWF}_{i} := \mathsf{Flux2ABSurf}\left(\mathsf{LimSurfFWF}\left(\lambda_{\mathsf{MUSE}_{i}}\right), \lambda_{\mathsf{MUSE}_{i}}\right)$

	(23.228)		("B")
LimMagSurfWF =	23.87		"V"
	23.928	Band _{MUSE} =	"R"
	23.479		"I"
	22.778)		("z")

MUSE ETC v3.0

 $\mathsf{FN}(\lambda) := \mathsf{FNoise}(\mathsf{LimSurfFWF}(\lambda), \mathsf{n}_{exp}, \mathsf{F}_{Sky}(\lambda), \mathsf{RN}_{CCD}, \mathsf{DN}_{CCD}, \mathsf{K}_{Obj}(\lambda), \mathsf{K}_{Sky}(\lambda), \mathsf{K}_{RN}, \mathsf{K}_{DC})$

	(0.061)		(0.058)		(0.083)
	0.712		0.734		0.499
$FN(\lambda_V) =$	0.191	$FN(\lambda_R) =$	0.175	$FN(\lambda_z) =$	0.352
	0.036	(,	0.033	(-)	0.066
	0.226)		0.208		0.418

Computing line emission sensitivity by arcsec

We sum the emission line over 3 pixels $k_{spec} := 3$ $FracE_{spec}(k_{spec}) = 0.923$ $K_{Obj}(\lambda) := K_O(FracE_{spec}(k_{spec}), 1, 1, \Delta_{WFspa}, \lambda, AM)$ $K_{Sky}(\lambda) := K_S(k_{spec} \cdot \Delta_{spec}, \Delta_{WFspa}, \lambda)$ $K_{RN} := k_{spec}$ $K_{DC} := K_{RN}$

$$\begin{split} \text{LimFLineSurfWF}(\lambda) &:= \text{F}_{O} \Big(\text{SN}_{\text{lim}}, n_{\text{exp}}, t_{\text{exp}}, \text{F}_{\text{Sky}}(\lambda), \text{RN}_{\text{CCD}}, \text{DN}_{\text{CCD}}, \text{K}_{\text{Obj}}(\lambda), \text{K}_{\text{Sky}}(\lambda), \text{K}_{\text{RN}}, \text{K}_{\text{DC}} \Big) \\ \text{LimFLineSurfWF} \Big(\lambda_{\text{B}} \Big) &= 5.38 \times 10^{-18} \, \text{erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2} \cdot \text{arcsec}^{-2} \end{split}$$

$$LimVFLineSurfWF_{i} := LimFLineSurfWF(\lambda_{MUSE_{i}})$$

$$LimVFLineSurfWF = \begin{pmatrix} 5.38 \times 10^{-18} \\ 2.143 \times 10^{-18} \\ 1.501 \times 10^{-18} \\ 1.489 \times 10^{-18} \\ 2.038 \times 10^{-18} \end{pmatrix} erg.s^{-1}.cm^{-2}.arcsec^{-2} Band_{MUSE} = \begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix}$$

14.2 HR mode

Nota that the computation is done for a single 1 hour integration

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\!\!\left(1, 1, \Delta_{\mathsf{spec}}, \Delta_{\mathsf{HRspa}}, \lambda, \mathsf{AM}\right) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\!\!\left(\Delta_{\mathsf{spec}}, \Delta_{\mathsf{HRspa}}, \lambda\right) \\ & \mathsf{K}_{\mathsf{RN}} := 1 \\ & \mathsf{K}_{\mathsf{DC}} := 1 \end{split}$$

```
\mathsf{F}_{Sky}(\lambda) := \mathsf{Flux}_{SkyNoOH}(\lambda)
```

 $\mathsf{LimSurfFHR}(\lambda) := \mathsf{F}_{O}\!\!\left(\mathsf{SN}_{\mathsf{lim}}, 1, t_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\right)$

$$LimMagSurfHR_{i} := Flux2ABSurf(LimSurfFHR(\lambda_{MUSE_{i}}), \lambda_{MUSE_{i}})$$

i := 0..4

	(16.126)		("B")
LimMagSurfHR =	17.175		"V"
	17.278	Band _{MUSE} =	"R"
	16.803		"I"
	15.76		("z")

 $\mathsf{FN}(\lambda) := \mathsf{FNoise} \Big(\mathsf{LimSurfFHR}(\lambda), 1, t_{exp}, \mathsf{F}_{Sky}(\lambda), \mathsf{RN}_{CCD}, \mathsf{DN}_{CCD}, \mathsf{K}_{Obj}(\lambda), \mathsf{K}_{Sky}(\lambda), \mathsf{K}_{RN}, \mathsf{K}_{DC} \Big)$

	(0.656)		(0.655)			0.661
	0.016		0.018			6.201×10^{-3}
$FN(\lambda_V) =$	0.276	$FN(\lambda_R) =$	0.275		$FN(\lambda_z) =$	0.28
	0.052		0.052			0.052
	0.327		0.327)]		0.332

15. Limiting flux for an unresolved source

15.1 WF mode

15.1.1 Seeing limited, poor seeing conditions

i := 0..4

 $EE_{spa}(\lambda) := EEnoao_{poor}(\lambda, k_{spa_poor})$

<u>back</u>

$$K_{Obj}(\lambda) := K_{O}(1, EE_{spa}(\lambda), \Delta_{spec}, 1, \lambda, AM)$$

$$K_{Sky}(\lambda) := K_{S}(\Delta_{spec}, k_{spa_poor} \cdot \Delta_{WFspa}, \lambda)$$

$$K_{RN} := k_{spa_poor}^{2}$$

$$K_{DC} := k_{spa_poor}^{2}$$

 $\mathsf{LimFContWFnoao}_{\mathsf{poor}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

$$LimMagContWFnoao_{poor_{i}} := Flux2AB(LimFContWFnoao_{poor}(\lambda_{MUSE_{i}}), \lambda_{MUSE_{i}})$$

i := 0..4

LimMagContWFnoao_{poor} =
$$\begin{pmatrix} 24.136 \\ 24.813 \\ 24.918 \\ 24.544 \\ 23.906 \end{pmatrix}$$
 Band_{MUSE} = $\begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix}$

In case of lower dispersion we have

$$\begin{split} & \kappa_{Obj}(\lambda) := \kappa_{O}(1, \text{EE}_{spa}(\lambda), \Delta_{lowspec}, 1, \lambda, \text{AM}) \\ & \kappa_{Sky}(\lambda) := \kappa_{S}(\Delta_{lowspec}, \kappa_{spa_poor} \cdot \Delta_{WFspa}, \lambda) \\ & \kappa_{RN} := \kappa_{sumspec} \kappa_{spa_poor}^{2} \\ & \kappa_{DC} := \kappa_{RN} \end{split}$$

$$\begin{split} \text{LimFContWFnoao}_{\text{poor}}(\lambda) &:= \text{F}_{O}(\text{SN}_{\text{lim}}, \text{n}_{\text{exp}}, \text{F}_{\text{Sky}}(\lambda), \text{RN}_{\text{CCD}}, \text{DN}_{\text{CCD}}, \text{K}_{\text{Obj}}(\lambda), \text{K}_{\text{Sky}}(\lambda), \text{K}_{\text{RN}}, \text{K}_{\text{DC}}) \\ \text{LimMagContLowWFnoao}_{\text{poor}_{i}} &:= \text{Flux2AB}(\text{LimFContWFnoao}_{\text{poor}}(\lambda_{\text{MUSE}_{i}}), \lambda_{\text{MUSE}_{i}}) \end{split}$$

i := 0..4

15.1.1.2 Line emission source

We sum the emission line over 3 pixels $k_{spec} := 3$ $FracE_{spec}(k_{spec}) = 0.923$ $K_{Obj}(\lambda) := K_O(FracE_{spec}(k_{spec}), EE_{spa}(\lambda), 1, 1, \lambda, AM)$ $K_{Sky}(\lambda) := K_S(k_{spec} \cdot \Delta_{spec}, k_{spa_poor} \cdot \Delta_{WFspa}, \lambda)$ $K_{RN} := k_{spa_poor}^2 \cdot k_{spec}$ $K_{DC} := K_{RN}$

 $\mathsf{LimFLineWFnoao}_{\mathsf{poor}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{t}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

 $LimVFLineWFnoao_{poor_{i}} := LimFLineWFnoao_{poor} \left(\lambda_{MUSE_{i}} \right)$

i := 0..4

LimVFLineWFnoao _{poor} =	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BandMUSE	´"B"
	$\begin{array}{c c} 6.087 \times 10^{-19} \\ 5.636 \times 10^{-19} \\ \hline 7.312 \times 10^{-19} \end{array} $	Danamuse	"I" _"z" /

 $\mathsf{FN}(\lambda) := \mathsf{FNoise} \Big(\mathsf{LimFLineWFnoao}_{poor}(\lambda), \mathsf{n}_{exp}, \mathsf{t}_{exp}, \mathsf{F}_{Sky}(\lambda), \mathsf{RN}_{CCD}, \mathsf{DN}_{CCD}, \mathsf{K}_{Obj}(\lambda), \mathsf{K}_{Sky}(\lambda), \mathsf{K}_{RN}, \mathsf{K}_{DC} \Big)$

	(9.05×10^{-3})		(8.661×10^{-3})		(0.012)
	0.752		0.772		0.537
$FN(\lambda_V) =$	0.201	$FN(\lambda_R) =$	0.184	$FN(\lambda_z) =$	0.379
	0.038		0.035		0.071
	0.239		0.219		(0.45)

15.1.2 Seeing limited, good seeing conditions

i := 0..4

 $\mathsf{EE}_{spa}(\lambda) := \mathsf{EEnoao}_{good}(\lambda, \mathsf{k}_{spa_good})$

<u>back</u>

15.1.2.1 Continuum source

$$K_{Obj}(\lambda) := K_{O}(1, EE_{spa}(\lambda), \Delta_{spec}, 1, \lambda, AM)$$

$$K_{Sky}(\lambda) := K_{S}(\Delta_{spec}, k_{spa_good} \cdot \Delta_{WFspa}, \lambda)$$

$$K_{RN} := k_{spa_good}^{2}$$

$$K_{DC} := k_{spa_good}^{2}$$

 $\mathsf{LimFContWFnoao}_{good}(\lambda) := \mathsf{F}_{O}\!\!\left(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{exp}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\right)$

i := 0..4

$$LimMagContWFnoao_{good} = \begin{pmatrix} 24.627 \\ 25.317 \\ 25.408 \\ 25.041 \\ 24.386 \end{pmatrix} Band_{MUSE} = \begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix}$$

In case of lower dispersion we have

$$\begin{split} & \kappa_{Obj}(\lambda) := \kappa_{O}(1, \mathsf{EE}_{spa}(\lambda), \Delta_{lowspec}, 1, \lambda, \mathsf{AM}) \\ & \kappa_{Sky}(\lambda) := \kappa_{S}(\Delta_{lowspec}, \kappa_{spa_good} \cdot \Delta_{WFspa}, \lambda) \\ & \kappa_{RN} := \kappa_{sumspec} \kappa_{spa_good}^{2} \end{split}$$

 $K_{DC} := K_{RN}$

 $\mathsf{LimFContWFnoao}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

 $\mathsf{LimMagContLowWFnoao}_{\mathsf{good}_i} \coloneqq \mathsf{Flux2AB} \Big(\mathsf{LimFContWFnoao}_{\mathsf{good}} \Big(\lambda_\mathsf{MUSE}_i \Big), \lambda_\mathsf{MUSE}_i \Big)$

i := 0..4

$$\operatorname{LimMagContLowWFnoao}_{\operatorname{good}} = \begin{pmatrix} 25.889 \\ 26.575 \\ 26.665 \\ 26.299 \\ 25.647 \end{pmatrix} \qquad \operatorname{Band}_{\operatorname{MUSE}} = \begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix}$$

15.1.2.2 Line emission source

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\big(\mathsf{FracE}_{\mathsf{spec}}\big(\mathsf{k}_{\mathsf{spec}}\big), \mathsf{EE}_{\mathsf{spa}}(\lambda), 1, 1, \lambda, \mathsf{AM}\big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\big(\mathsf{k}_{\mathsf{spec}} \cdot \Delta_{\mathsf{spec}}, \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}} \cdot \Delta_{\mathsf{WFspa}}, \lambda\big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}}^{2} \cdot \mathsf{k}_{\mathsf{spec}} \end{split}$$

 $K_{DC} := K_{RN}$

 $\mathsf{LimFLineWFnoao}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

$$\mathsf{LimVFLineWFnoao}_{good} := \mathsf{LimFLineWFnoao}_{good} \Bigl(\lambda_{\mathsf{MUSE}_i} \Bigr)$$

i := 0..4

<u>back</u>

	(1.503×10^{-18})		("B")
	5.7×10^{-19}		"V"
LimVFLineWFnoao _{good} =	$3.875 \times 10^{-19} \text{ erg} \cdot \text{s}^{-1}$	·cm ^{−2} Band	$MUSE = \left \begin{array}{c} \mathbf{R} \\ \mathbf{U} \\ \mathbf{W} \\ W$
	3.563×10^{-19}		("z")
	(4.693×10^{-19})		

 $\mathsf{FN}(\lambda) := \mathsf{FNoise} \Big(\mathsf{LimFLineWFnoao}_{good}(\lambda), \mathsf{n}_{exp}, \mathsf{t}_{exp}, \mathsf{F}_{Sky}(\lambda), \mathsf{RN}_{CCD}, \mathsf{DN}_{CCD}, \mathsf{K}_{Obj}(\lambda), \mathsf{K}_{Sky}(\lambda), \mathsf{K}_{RN}, \mathsf{K}_{DC} \Big)$

	0.012		0.012		0.017	
$FN(\lambda_V) =$	0.201	$FN(\lambda_R) =$	0.184	$FN(\lambda_z) =$	0.378	
~ /	0.038	· · ·	0.034	~ /	0.071	
	0.238		0.218/		0.448	<u>back</u>

15.1.3 AO Gen I, poor seeing conditions

i := 0..4

 $\mathsf{EE}_{spa}(\lambda) := \mathsf{EEgenl}_{poor}(\lambda, \mathsf{k}_{spa_poor})$

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\big(1, \mathsf{EE}_{\mathsf{spa}}(\lambda), \Delta_{\mathsf{spec}}, 1, \lambda, \mathsf{AM}\big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\big(\Delta_{\mathsf{spec}}, \mathsf{k}_{\mathsf{spa}}_{\mathsf{poor}} \cdot \Delta_{\mathsf{WFspa}}, \lambda\big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{poor}}^{2} \\ & \mathsf{K}_{\mathsf{DC}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{poor}}^{2} \end{split}$$

 $\mathsf{LimFContWFgenI}_{\mathsf{poor}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

$$\mathsf{LimMagContWFgenl}_{\mathsf{poor}_i} := \mathsf{Flux2AB} \left(\mathsf{LimFContWFgenl}_{\mathsf{poor}} \left(\lambda_{\mathsf{MUSE}_i} \right), \lambda_{\mathsf{MUSE}_i} \right)$$

i := 0..4

$$\mathsf{LimMagContWFgenI}_{\mathsf{poor}} = \begin{pmatrix} 24.261 \\ 25.11 \\ 25.223 \\ 24.87 \\ 24.257 \end{pmatrix} \qquad \mathsf{Band}_{\mathsf{MUSE}} = \begin{pmatrix} "\mathsf{B}" \\ "\mathsf{V}" \\ "\mathsf{R}" \\ "I" \\ "z" \end{pmatrix}$$

In case of lower dispersion we have

$$\begin{split} & \kappa_{Obj}(\lambda) := \kappa_{O}(1, \mathsf{EE}_{spa}(\lambda), \Delta_{lowspec}, 1, \lambda, \mathsf{AM}) \\ & \kappa_{Sky}(\lambda) := \kappa_{S}(\Delta_{lowspec}, \kappa_{spa_poor} \cdot \Delta_{WFspa}, \lambda) \\ & \kappa_{RN} := \kappa_{sumspec} \kappa_{spa_poor}^{2} \\ & \kappa_{DC} := \kappa_{RN} \end{split}$$

$$\begin{split} \text{LimFContWFgenl}_{\text{poor}}(\lambda) &:= \text{F}_{O}(\text{SN}_{\text{lim}}, \text{n}_{\text{exp}}, \text{F}_{\text{Sky}}(\lambda), \text{RN}_{\text{CCD}}, \text{DN}_{\text{CCD}}, \text{K}_{\text{Obj}}(\lambda), \text{K}_{\text{Sky}}(\lambda), \text{K}_{\text{RN}}, \text{K}_{\text{DC}}) \\ \text{LimMagContLowWFgenl}_{\text{poor}_{i}} &:= \text{Flux2AB}(\text{LimFContWFgenl}_{\text{poor}}(\lambda_{\text{MUSE}_{i}}), \lambda_{\text{MUSE}_{i}}) \end{split}$$

i := 0..4

$$\operatorname{LimMagContLowWFgenI}_{\operatorname{poor}} = \begin{pmatrix} 25.52 \\ 26.366 \\ 26.479 \\ 26.126 \\ 25.515 \end{pmatrix} \qquad \operatorname{Band}_{\operatorname{MUSE}} = \begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix}$$

15.1.3.2 Line emission source

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\big(\mathsf{FracE}_{\mathsf{spec}}\big(\mathsf{k}_{\mathsf{spec}}\big), \mathsf{EE}_{\mathsf{spa}}(\lambda), 1, 1, \lambda, \mathsf{AM}\big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\big(\mathsf{k}_{\mathsf{spec}} \cdot \Delta_{\mathsf{spec}}, \mathsf{k}_{\mathsf{spa}_\mathsf{poor}} \cdot \Delta_{\mathsf{WF}\mathsf{spa}}, \lambda\big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{k}_{\mathsf{spa}_\mathsf{poor}}^2 \cdot \mathsf{k}_{\mathsf{spec}} \\ & \mathsf{K}_{\mathsf{DC}} := \mathsf{K}_{\mathsf{RN}} \end{split}$$

 $\mathsf{LimFLineWFgenI}_{\mathsf{poor}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

$$\mathsf{LimVFLineWFgenI}_{poor_{i}} := \mathsf{LimFLineWFgenI}_{poor} \left(\lambda_{\mathsf{MUSE}_{i}} \right)$$

i := 0..4

 $\mathsf{LimVFLineWFgenl}_{\mathsf{poor}} = \begin{pmatrix} 2.109 \times 10^{-18} \\ 6.908 \times 10^{-19} \\ 4.596 \times 10^{-19} \\ 4.177 \times 10^{-19} \\ 5.293 \times 10^{-19} \end{pmatrix} \text{ erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2} \qquad \mathsf{Band}_{\mathsf{MUSE}} = \begin{pmatrix} \mathsf{"B"} \\ \mathsf{"V"} \\ \mathsf{"R"} \\ \mathsf{"I"} \\ \mathsf{"z"} \end{pmatrix}$

 $\mathsf{FN}(\lambda) := \mathsf{FNoise} \left(\mathsf{LimFLineWFgenI}_{\mathsf{poor}}(\lambda), \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}} \right)$

	(9.05×10^{-3})		(8.661×10^{-3}))		(0.012)	
	0.752		0.772			0.537	
$FN(\lambda_V) =$	0.201	$FN(\lambda_R) =$	0.184		$FN(\lambda_z) =$	0.379	
	0.038		0.035		~ /	0.071	
	0.239		0.219)		0.45	<u>back</u>

15.1.4 AO Gen I, good seeing conditions

i := 0..4

 $\mathsf{EE}_{spa}(\lambda) := \mathsf{EEgenl}_{good}(\lambda, \mathsf{k}_{spa_good})$

15.1.4.1 Continuum source

<u>back</u>

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\big(1, \mathsf{EE}_{\mathsf{spa}}(\lambda), \Delta_{\mathsf{spec}}, 1, \lambda, \mathsf{AM}\big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\big(\Delta_{\mathsf{spec}}, \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}} \cdot \Delta_{\mathsf{WF}\mathsf{spa}}, \lambda\big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}}^{2} \\ & \mathsf{K}_{\mathsf{DC}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}}^{2} \end{split}$$

 $\mathsf{LimFContWFgenl}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

 $LimMagContWFgenI_{good_{i}} := Flux2AB(LimFContWFgenI_{good}(\lambda_{MUSE_{i}}), \lambda_{MUSE_{i}})$

i := 0..4

LimMagContWFgenI _{good} =	(24.911)		("B")
	25.608	Band _{MUSE} =	"V"
	25.711		"R"
	25.345		"I"
	24.697		"z")

In case of lower dispersion we have

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) \coloneqq \mathsf{K}_{\mathsf{O}}(1,\mathsf{EE}_{\mathsf{Spa}}(\lambda),\Delta_{\mathsf{lowspec}},1,\lambda,\mathsf{AM}) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) \coloneqq \mathsf{K}_{\mathsf{S}}(\Delta_{\mathsf{lowspec}},\mathsf{k}_{\mathsf{Spa}_\mathsf{good}}\cdot\Delta_{\mathsf{WF}\mathsf{Spa}},\lambda) \\ & \mathsf{K}_{\mathsf{RN}} \coloneqq \mathsf{N}_{\mathsf{sumspec}}\mathsf{k}_{\mathsf{Spa}_\mathsf{good}}^2 \end{split}$$

 $K_{DC} := K_{RN}$

 $\mathsf{LimFContWFgenl}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

 $\mathsf{LimMagContLowWFgenl}_{good_{i}} := \mathsf{Flux2AB} \Big(\mathsf{LimFContWFgenl}_{good} \Big(\lambda_{\mathsf{MUSE}_{i}} \Big), \lambda_{\mathsf{MUSE}_{i}} \Big)$

i := 0..4

	(26.172)		("B" `)
	26.866		"V"	
LimMagContLowWFgenI _{good} =	26.968	Band _{MUSE} =	"R"	
	26.602		"I"	back
	25.958		("z")	J

15.1.4.2 Line emission source

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\big(\mathsf{FracE}_{\mathsf{spec}}\big(\mathsf{k}_{\mathsf{spec}}\big), \mathsf{EE}_{\mathsf{spa}}(\lambda), 1, 1, \lambda, \mathsf{AM}\big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\big(\mathsf{k}_{\mathsf{spec}} \cdot \Delta_{\mathsf{spec}}, \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}} \cdot \Delta_{\mathsf{WF}\mathsf{spa}}, \lambda\big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{k}_{\mathsf{spa}}_{\mathsf{good}}^{2} \cdot \mathsf{k}_{\mathsf{spec}} \\ & \mathsf{K}_{\mathsf{DC}} := \mathsf{K}_{\mathsf{RN}} \\ & \mathsf{F}_{\mathsf{Sky}}(\lambda) := \mathsf{Flux}_{\mathsf{SkyNoOH}}(\lambda) \end{split}$$

 $\mathsf{LimFLineWFgenl}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, \mathsf{n}_{\mathsf{exp}}, \mathsf{t}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

$$\mathsf{LimVFLineWFgenl}_{\mathsf{good}_i} \coloneqq \mathsf{LimFLineWFgenl}_{\mathsf{good}} \left(\lambda_{\mathsf{MUSE}_i} \right)$$

i := 0..4

$$\text{LimVFLineWFgenl}_{\text{good}} = \begin{pmatrix} 1.157 \times 10^{-18} \\ 4.36 \times 10^{-19} \\ 2.93 \times 10^{-19} \\ 2.695 \times 10^{-19} \\ 3.523 \times 10^{-19} \end{pmatrix} \text{ erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2} \text{ Band}_{\text{MUSE}} = \begin{pmatrix} \text{"B"} \\ \text{"V"} \\ \text{"R"} \\ \text{"I"} \\ \text{"z"} \end{pmatrix}$$

$$\mathsf{FN}(\lambda) := \mathsf{FNoise}\left(\mathsf{LimFLineWFgenl}_{\mathsf{good}}(\lambda), \mathsf{n}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\right)$$

	(0.012)		(0.012)		(0.017)	
	0.75		0.77		0.535	
$FN(\lambda_V) =$	0.201	$FN(\lambda_R) =$	0.184	$FN(\lambda_z) =$	0.378	
(-)	0.038	(,	0.034	(-/	0.071	
	0.238		0.218/		0.448	<u>back</u>

15.2 HR mode

15.2.1 AO Gen II, good seeing conditions

i := 0..4

 $EE_{spa}(\lambda) := EEgenII_{good}(\lambda, k_{spa_good})$ $EE_{spa}(\lambda) = 0.4$ 0.4 0.2 0.4 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 $\frac{\lambda}{\mu m}$

15.2.1.1 Continuum source

$$K_{Obj}(\lambda) := K_O(1, EE_{Spa}(\lambda), \Delta_{Spec}, 1, \lambda, AM)$$

 $K_{RN} := k_{spa_good}^2$ $K_{DC} := k_{spa_good}^2$

 $\mathsf{LimFContHRgenII}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}\!\!\left(\mathsf{SN}_{\mathsf{lim}}, 1, \mathsf{t}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\right)$

back

$$LimMagContHRgenII_{good_{i}} := Flux2AB(LimFContHRgenII_{good}(\lambda_{MUSE_{i}}), \lambda_{MUSE_{i}})$$

i := 0..4

$$\mathsf{LimMagContHRgenII}_{\mathsf{good}} = \begin{pmatrix} 21.084 \\ 21.994 \\ 22.3 \\ 22.09 \\ 21.657 \end{pmatrix} \qquad \mathsf{Band}_{\mathsf{MUSE}} = \begin{pmatrix} "\mathsf{B}" \\ "\mathsf{V}" \\ "\mathsf{R}" \\ "\mathsf{I}" \\ "\mathsf{Z}" \end{pmatrix}$$

In case of lower dispersion we have

$$\begin{split} & \mathsf{K}_{\mathsf{Obj}}(\lambda) := \mathsf{K}_{\mathsf{O}}\Big(1, \mathsf{EE}_{\mathsf{Spa}}(\lambda), \Delta_{\mathsf{lowspec}}, 1, \lambda, \mathsf{AM}\Big) \\ & \mathsf{K}_{\mathsf{Sky}}(\lambda) := \mathsf{K}_{\mathsf{S}}\Big(\Delta_{\mathsf{lowspec}}, \mathsf{K}_{\mathsf{spa}_\mathsf{good}}, \Delta_{\mathsf{HRspa}}, \lambda\Big) \\ & \mathsf{K}_{\mathsf{RN}} := \mathsf{N}_{\mathsf{sumspec}} \mathsf{K}_{\mathsf{spa}_\mathsf{good}}^2 \\ & \mathsf{K}_{\mathsf{DC}} := \mathsf{K}_{\mathsf{RN}} \\ & \mathsf{I}_{\mathsf{imEContHRgenII}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}\big(\mathsf{SN}_{\mathsf{lim}}, 1, \mathsf{t}_{\mathsf{evn}}, \mathsf{F}_{\mathsf{Skv}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}}\big) \end{split}$$

$$\begin{split} \text{LimFContHRgenII}_{\text{good}}(\lambda) &:= \text{F}_{O}(\text{SN}_{\text{lim}}, 1, t_{\text{exp}}, \text{F}_{\text{Sky}}(\lambda), \text{RN}_{\text{CCD}}, \text{DN}_{\text{CCD}}, \text{K}_{\text{Obj}}(\lambda), \text{K}_{\text{Sky}}(\lambda), \text{K}_{\text{RN}}, \text{K}_{\text{DN}} \\ \text{LimMagContLowHRgenII}_{\text{good}_{i}} &:= \text{Flux2AB}(\text{LimFContHRgenII}_{\text{good}}(\lambda_{\text{MUSE}_{i}}), \lambda_{\text{MUSE}_{i}}) \end{split}$$

i := 0..4

15.2.1.2 Line emission source

$$K_{Obj}(\lambda) := K_O(FracE_{spec}(k_{spec}), EE_{spa}(\lambda), 1, 1, \lambda, AM)$$

 $K_{\text{RN}} := k_{\text{spa}_\text{good}}^2 \cdot k_{\text{spec}}$

$$K_{DC} := K_{RN}$$

 $\mathsf{F}_{\mathsf{Sky}}(\lambda) := \mathsf{Flux}_{\mathsf{SkyNoOH}}(\lambda)$

 $\mathsf{LimFLineHRgenII}_{\mathsf{good}}(\lambda) := \mathsf{F}_{\mathsf{O}}(\mathsf{SN}_{\mathsf{lim}}, 1, \mathsf{t}_{\mathsf{exp}}, \mathsf{F}_{\mathsf{Sky}}(\lambda), \mathsf{RN}_{\mathsf{CCD}}, \mathsf{DN}_{\mathsf{CCD}}, \mathsf{K}_{\mathsf{Obj}}(\lambda), \mathsf{K}_{\mathsf{Sky}}(\lambda), \mathsf{K}_{\mathsf{RN}}, \mathsf{K}_{\mathsf{DC}})$

 $\mathsf{LimVFLineHRgenII}_{good_{i}} \coloneqq \mathsf{LimFLineHRgenII}_{good} \Bigl(\lambda_{\mathsf{MUSE}_{i}} \Bigr)$

i := 0..4

	(2.148×10^{-17})		("B")
	4.261×10^{-18}		"V"
LimVFLineHRgenII _{good} =	$2.277 \times 10^{-18} \text{ erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2}$	Band _{MUSE} =	"R"
	1.858×10^{-18}		"I"
	(2.857×10^{-18})		("z")

 $\mathsf{FN}(\lambda) := \mathsf{FNoise} \Big(\mathsf{LimFLineHRgenII}_{good}(\lambda), 1, t_{exp}, \mathsf{F}_{Sky}(\lambda), \mathsf{RN}_{CCD}, \mathsf{DN}_{CCD}, \mathsf{K}_{Obj}(\lambda), \mathsf{K}_{Sky}(\lambda), \mathsf{K}_{RN}, \mathsf{K}_{DC} \Big)$

	(0.185)		(0.183)		(0.192)]
	0.115		0.127		0.047	
$FN(\lambda_V) =$	0.59	$FN(\lambda_R) =$	0.581	$FN(\lambda_z) =$	0.64	
()	0.111	~ /	0.109		0.12	
	0.7		0.69		0.76 /	<u>back</u>

16. Accuracy requirements in sky subtraction

We compute the ratio of sky flux (outside OH lines) with the object flux

 $\begin{aligned} \text{RatioSkyObj}_{i} &:= \frac{\text{Flux}_{\text{SkyNoOH}}(\lambda_{\text{MUSE}_{i}}) \cdot \left(k_{\text{spa}_\text{good}} \cdot \Delta_{\text{WFspa}}\right)^{2} \cdot k_{\text{spec}} \cdot \Delta_{\text{spec}}}{\text{LimFLineWFgenl}_{\text{good}}\left(\lambda_{\text{MUSE}_{i}}\right)} \\ \text{RatioSkyObj} &= \begin{pmatrix} 10.487 \\ 29.526 \\ 34.47 \\ 37.174 \\ 20.095 \end{pmatrix} & \text{Band}_{\text{MUSE}} = \begin{pmatrix} "B" \\ "V" \\ "R" \\ "I" \\ "z" \end{pmatrix} \end{aligned}$

Thus at most the sky is 40 times the object flux and sky subtraction to a precision of 1% should be OK in all cases.