

Document Title: VISTA-VIRCAM Instrument Data

Document Number: VIS-TRE-IOA-20000-0016

Issue: 1.3 pre 1

Date: 2007-12-07

Document	Peter Bunclark	Signature	
Prepared by:	(CASU)	And date:	
Document	Mike Irwin	Signature	
Approved by:	(CASU Manager)	And date:	
Document Released	Jim Emerson	Signature	
by:	(VDFS Project Manager)	And date:	
-			

Change Record

Issue	Date	Sections Affected	Description of Change/Change Request Reference/Remarks
1.0	2006-07-21	All	New document
1.1	2006-08-09	All	total reflectance loss, WFCAM Z, atmosphere, overheads, VISTA Ag coating, throughput.
1.2	2007-03-13	front	first official version
1.3 pre 1	2007-12-07	6	Saturation data

Notification List

The following people should be notified by email that a new version of this document has been issued:

IoA	W Sutherland	
RAL	G Dalton	
QMUL	J Emerson	
ATC	Malcolm Stewart	

Contents

Change R	ecord	2
Notificatio	on List	2
List of Fig	gures	4
1 Introduc	ction	5
1.1 S	Scope of this Document	5
1.2 I	Data Availability	5
1.3 A	Applicable Documents	6
1.4 F	Reference Documents	6
1.5 A	Abbreviations and Acronyms	6
2 Teles	scope and Instrument Overview	7
3 VIST	ГА Telescope Mirrors	9
4 Trans	smission Optics	10
4.1 C	Cryostat Window	10
4.2 F	Field-Correction Lenses	10
4.3 1	Fotal Reflectance Losses	17
5 Filter	rs	18
6 Deter	ctors	19
6.1 (Quantum-Efficiency	19
6.2 S	Saturation Levels	20
7 Atmo	osphere	21
8 Total	l System Throughput	21
9 Over	heads	23

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	4 of 23

List of Figures

Figure 2-1 Conceptual View of the Light Path from Source to Detector	7
Figure 3-1 Ag coating Reflectivity	9
Figure 4-1 Trace of Lens 1 Concave Surface	11
Figure 4-2 Lens 1 Concave Surface Data.	11
Figure 4-3 Manufacturer's Trace of Lens 1 Convex Surface	12
Figure 4-4 Lens 1 Convex Data	12
Figure 4-5 Manufacturer's Trace of Lens 2 Concave Surface	13
Figure 4-6 Lens 2 Concave Data	13
Figure 4-7 Manufacturer's Trace of Lens 2 Convex Surface	14
Figure 4-8 Lens 2 Convex Data	14
Figure 4-9 Manufacturer's Traces of Lens 3 Both Surfaces	15
Figure 4-10 Lens 3 Concave Data	15
Figure 4-11 Lens 3 Convex Data	16
Figure 4-12 All Lens Reflectance data over-plotted	16
Figure 4-13 Total Attenuation in Transmission Optics	17
Figure 5-1 VIRCAM filter Witness-Sample transmissions	18
Figure 6-1 Manufacturer's Quantum-Efficiency Curve	19
Figure 6-2 QE Data scaled to detector	20
Figure 7-1 Adopted Atmospheric absorption at VISTA	21
Figure 8-1 Total Throughput at an Airmass of 1.0	22

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	5 of 23

1 Introduction

The Visible and Infrared Survey Telescope for Astronomy (VISTA) is a new 4-metre telescope designed specifically for imaging survey work at visible and near-infrared wavelengths. The pawprint of the VISTA infrared camera (VIRCAM) will cover 0.59 degree² in ZYJHK_s passbands, using a 4×4 array of 2k×2k non-buttable chips with ~0.34" pixels.

VISTA will be located in the southern hemisphere, at the European Southern Observatory's (ESO's) Cerro Paranal Observatory.

1.1 Scope of this Document

The VISTA Data-Flow System follows the specifications laid out in [AD1], including the Exposure Time Calculator (ETC). This document describes the Instrument Data, supplied as machine-readable files, used to calculate the system throughput.

1.2 Data Availability

As well as being described and illustrated in this document, the data is available tabulated in plain ascii files at <u>ftp://ftp.ast.cam.ac.uk/pub/psb/VISTA/instrument</u>.

File	Contents		
README	explanatory text		
m1.tab	M1 (primary mirror) reflectivity 300-3000nm		
m2.tab	M2 (secondary mirror) ditto		
concave1.tab	digitized reflectivity data for Lens 1 concave		
	surface, tabulated from 750 to 2500 nm every nm		
convex1.tab	Lens 1 convex ditto		
concave2.tab	Lens 1 concave ditto		
convex2.tab	Lens 2 convex ditto		
concave2.tab	Lens 2 concave ditto		
convex3.tab	Lens 3 convex ditto		
concave3.tab	Lens 3 concave ditto		
Z.tab	Z filter tabulated in 1nm steps from 500 to 2500nm		
Y.tab	Y filter ditto		
J.tab	J filter ditto		
H.tab	H filter ditto		
Ks.tab	K short filter ditto		
qe.tab	representative QE curve for the detectors, tabulated		
	from 806-3529nm every nm		
atmosphere.tab	Model atmospheric absorption		

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	6 of 23

1.3 Applicable Documents

- [AD1] Data Flow for the VLT/VLTI Instruments Deliverables Specification, VLT-SPE-ESO-19000-1618, issue 2.0, 2004-05-22.
- [AD2] VISTA Infra Red Camera Exposure Time Calculator Specification, VIS-SPE-IOA-20000-0009, issue 1.1, 2005-09-01.

1.4 Reference Documents

- [RD1] VISTA Infra Red Camera DFS Calibration Plan, VIS-SPE-IOA-20000-00002, issue 1.3, 2005-12-25.
- [RD2] VISTA Infra Red Camera DFS Data-Reduction Specifications, VIS-SPE-IOA-20000-00003, issue 1.0, 2004-12-15.
- [RD3] VISTA Science Requirements Document, VIS-SPE-VSC-00000-0001, issue 2.0, 2000-10-26
- [RD4] VISTA IR Camera Technical Specification, VIS-SPE-ATC-06000-0004 Issue 2.0
- [RD5] The UKIRT Infrared Deep Sky Survey ZYJHK Photometric System: Passbands and Synthetic Colours, Hewett P.C., Warren S.J., Legett S.K., Hodgkin S.T., MNRAS, 367, 454, 2006.
- [RD6] NASA Technical Memorandum, 103957. Lord S.D. 1992.

1.5 Abbreviations and Acronyms

ATRAN	Atmospheric Transmission code
DFS	Data Flow System
ETC	Exposure Time Calculator
PSF	Point Spread Function
SRD	Science Requirements Document
VDFS	VISTA Data Flow System
VIRCAM	VISTA Infrared Camera
VISTA	Visible and Infrared Survey Telescope for Astronomy
WFCAM	Wide Field Camera (on UKIRT)

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	7 of 23

2 Telescope and Instrument Overview

VISTA is an alt-azimuth 2-mirror telescope with a single focal station (quasi Ritchey-Chrétien) which can accommodate one of two possible cameras: an IR Camera or (if funded later) a visible camera. The telescope has a fast focal ratio (f/1 primary, f/3.25 at Cass) hence a compact structure. The telescope uses active optics, with 84 axial force actuators controlling the shape of the primary mirror (M1), and a 5-axis hexapod controlling the position of the secondary mirror (M2).

Figure 2-1 Conceptual View of the Light Path from Source to Detector

The infrared camera (details in [RD4]) is a novel design with no cold stop, but instead a long cold baffle extending ~ 2.1 m above the focal plane to minimise the detectors' view of warm surfaces. There is a large entrance window (95cm diameter) and 3 corrector lenses, all IR-grade fused silica. There is only one moving part (the filter wheel). The camera also contains fixed autoguiders and wavefront sensors (2 each, using CCDs operating at \sim 800nm wavelength) to control the tracking and active optics. Table 1 gives approximate values for the main system parameters.

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	8 of 23

Telescope Mount	Alt-Azimuth
Focal Station	Cassegrain
Primary Mirror Diameter	4.1 metre
Entrance Pupil Diameter	3.7 metre
Secondary Mirror Diameter	1.24 metre
Baffle Diameter	1.63 metre
System Focal Length	12.072 metre
Wavelength Range	0.85-2.4µm
Field of View (total)	1.65° diameter
Field of View (detectors)	$0.59 \text{ deg}^2 (1.5^{\circ} \times 1^{\circ} \text{ tiled})$
Detectors	4×4 mosaic of 2048×2048 Raytheon
	VIRGO
Pixel Scale (Infrared)	0.34″ / 20μm
Controllers	ESO IRACE
System Image Quality	$\leq 0.5''$ (goal: 0.4").
Readouts	16 per detector (each a "stripe" of
	2048×128 pixels).
Readout time	Approx. 1 second
Filters (mounted)	1 dark + 7 science (Z, Y, J, H, K _S ,
	NB1.18 + TBD)

Table 1: VISTA and VIRCAM baseline system parameters

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	9 of 23

3 VISTA Telescope Mirrors

The two mirrors are silvered for optimal infra red performance, where a fresh Ag coating will give almost complete reflection in the IR.

At the time of this document release, the actual VISTA mirror reflectivity is unavailable; however the Figure 3-1 shows the performance of matching material which was silver-coated in the VISTA silvering plant. The original un-calibrated data has had a scale factor of 1.0029 applied long ward of 2000nm to put it on a common system. It can be assumed that M1 and M2 will be initially identical.

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	10 of 23

4 Transmission Optics

Four elements are in this category, the cryostat front window and the set of lenses comprising the correction optics.

4.1 Cryostat Window

The plane window has its outside surface in atmosphere, with the potential to accumulate contamination, with the inside surface in the essentially permanently clean environment of the cryostat.

4.2 Field-Correction Lenses

There are three lenses, each with a concave and convex surface, all reside within the cryostat.

Reflectance data was provided graphically by the manufacturer and has been digitised using "Engauge Digitizer" software (<u>http://digitizer.sourcefourge.net</u>). Note that the very high frequencies are a measurement artefact - for example they go negative on occasion – and so the digitization process smoothed over the curves.

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	11 of 23

Figure 4-1 Trace of Lens 1 Concave Surface

Figure 4-2 Lens 1 Concave Surface Data.

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	12 of 23

Figure 4-3 Manufacturer's Trace of Lens 1 Convex Surface

Figure 4-4 Lens 1 Convex Data

Figure 4-5 Manufacturer's Trace of Lens 2 Concave Surface

Figure 4-6 Lens 2 Concave Data

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	14 of 23

Figure 4-8 Lens 2 Convex Data

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	15 of 23

Figure 4-9 Manufacturer's Traces of Lens 3 Both Surfaces

Figure 4-10 Lens 3 Concave Data

Figure 4-12 All Lens Reflectance data over-plotted

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	17 of 23

In the over-plot diagram Figure 2-1, the none-valid data below 750nm is omitted. It can be seen that the reflectance of the concave surfaces of lenses 2 & 3 matches rather well, as do all three convex-surface data sets.

4.3 Total Reflectance Losses

Combining all six lens-surface data, and in the absence of actual window data assuming that the window will have the same surface properties as lens 3, the total attenuation due to reflectance in the transmission optics is as shown in Figure 4-13.

Figure 4-13 Total Attenuation in Transmission Optics

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	18 of 23

5 Filters

The VIRCAM filters are designed to work at the cryogenic temperatures of the IR detectors. Because the science filters themselves cannot be scanned in such an environment, smaller witness samples are scanned at the correct temperature. The profiles of the four currently supplied filters are shown below in Figure 5-1. The Z filter for VIRCAM has been specified to be as close as practicable to the WFCAM Z filter [RD5], and the latter will be used pending data for the new filter.

Figure 5-1 VIRCAM filter Witness-Sample transmissions

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	19 of 23

6 Detectors

6.1 Quantum-Efficiency

The Quantum-Efficiency curve was supplied as a representative, relative scan:

Figure 6-1 Manufacturer's Quantum-Efficiency Curve

When digitized in similar fashion to the lenses, and scaled to a typical good sciencegrade chip, the data is as follows:

Figure 6-2 QE Data scaled to detector

6.2 Saturation Levels

Interim values for the saturation levels in ADUs for each chip has been determined from AIT data taken at RAL during 2006:

Chip	Saturation/ADU
1	34300
2	38000
3	37800
4	37000
5	31200
6	38800
7	36500
8	38400
9	39400
10	36900
11	39300
12	36500
13	40500
14	39600
15	37200
16	40600

Table 2 Detector Saturation Levels

Note that these are interim values (as of 2007-12) pending a targeted investigation of saturation characteristics.

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument	Date:	2007-12-07
Data Flow		Issue:	1.4
System	Data	Page:	21 of 23

7 Atmosphere

While not part of the instrument as such, the atmosphere is a key element in the

Figure 7-1 Adopted Atmospheric absorption at VISTA

exposure-time calculation. The model, shown in Figure 7-1 above, is the atmospheric absorption computed with ATRAN ([RD6]) for an airmass of 1.0 and precipitable water vapour of 2.0mm. It has been binned to 1nm to match all of the optics data.

8 Total System Throughput

Combining all of the above information, we can now derive the total system throughput from above the atmosphere, through the telescope, window, lenses, filter and detector. Using the QE for the best detector, Figure 8-1 illustrates the calculated throughput for Z, Y, J, H and K_S.

Figure 8-1 Total Throughput at an Airmass of 1.0

VISTA		Document:	VIS-TRE-IOA-20000-0016
	Instrument Data	Date:	2007-12-07
Data Flow		Issue:	1.4
System		Page:	23 of 23

9 Overheads

The calculation of elapsed time for a tile, for a given set of exposure parameters, as described in section 7.2 of the ETC specification [AD2], will use the following overhead elements:

Overhead	Time/s
O _{DIT}	1.0
O _{jitter}	6.0
O _{micro}	4.0
O _{paw}	10.0
O _{read}	1.0
O _{read/reset}	1.0
O _{reset}	1.0
O _{save}	3.66

Table 3 Exposure Overhead Values

000