

Data Flow System

Document Title:	VISTA Data Reduction Library Design
Document Number:	VIS-SPE-IOA-20000-0010
Issue:	1.2
Date:	2005-08-12

Document Prepared by:	Jim Lewis Peter Bunclark Simon Hodgkin (CASU)	Signature and Date:	
Document Approved by:	Mike Irwin (CASU Manager)	Signature and Date:	
Document Released by:	Malcolm Stewart (VDFS Manager)	Signature and Date:	

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	2 of 124

Change Record

Issue	Date	Sections Affected	Reason/Initiation/Documents/Remarks
1.0	2004-12-17	All	New Document
1.1	2005-05-03	All	post-FDR revision
1.2	2005-08-12	4	post DICB comments

Notification List

The following people should be notified by email that a new issue of this document is available.

IoA	Will Sutherland
RAL	Gavin Dalton
QMC	Jim Emerson

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow	Liviar j 2 obigi	Date:	2005-08-12
System		Page:	3 of 124

Contents

Cl	nange R	lecord	2
N	otificati	on List	2
Fi	gures		5
1	Intro	oduction	7
	1.1	Scope	7
	1.2	Applicable Documents	7
	1.3	Reference Documents	7
	1.4	Abbreviations and Acronyms	8
	1.5	Glossary	8
2	Matl	hematical Description	10
	2.1	Reset Correction.	10
	2.2	Non-Linearity	10
	2.3	Gain Correction	13
	2.4	Measurement of Read Noise and Gain	13
	2.5	Dark-correction. flat-fielding and sky-correction	14
	2.6	Fringe Removal	15
	2.7	Image persistence	16
	2.8	Crosstalk	16
	29	Astrometric Calibration	17
	2.10	World Coordinate System	18
	2.11	Effect of Scale Change on Photometry	18
	2.12	Confidence Maps	18
	2.13	Catalogue generation	19
	2.13	Photometric Zeropoint	22
	2.11	Illumination Correction	23
3	Fund	tional Description	25
5	3 1	Recines	27
Δ	Instr	ument Data Description	37
5	DRI	Data Structures	<u>4</u> 4
5	51	Introduction to Data Products	<u>11</u>
	5.1	Channel Table	45
	53	Bad Pixel Mask	т <i>3</i> Л6
	5.5	L inearity Channel Table	40
	5.5	Crosstalk Matrix	40 17
	5.5	Illumination Correction Table	47
	5.0	Difference Image Statistics Table	47
	5.0	Difference image Statistics Table	4/
	5.0	Felsistellee Mask Table	40
	5.10	Matched Standards Table	40
	5.10	Object Cetalogues	49
6	J.11	Europiana	49
0		r uncuons	52
	0.1 6 2	vircani_crosstatk	51
	0.2	viicani_uaikcoi	54
	0.3	vincani_uerninge	53
	0.4	vircam_flatcor	57

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	4 of 124

6.5	vircam genlincur	
6.6	vircam_getstds	60
6.7	vircam_illum	61
6.8	vircam_imcombine	
6.9	vircam_imcore	65
6.1	0 vircam_imstack	
6.1	1 vircam_interleave	
6.1	2 vircam_lincor	70
6.1	3 vircam_matchstds	72
6.1	4 vircam_matchxy	73
6.1	5 vircam_mkconf	74
6.1	6 vircam_persist	76
6.1	7 vircam_photcal	77
6.1	8 vircam_platesol	78
6.1	9 vircam_sky_flat_combine	
7	Data Reduction CPL Plugins	
7.1	vircam_reset_combine	
7.2	vircam_dark_combine	
7.3	vircam_dark_current	
7.4	vircam_dome_flat_combine	
7.5	vircam_detector_noise	
7.6	vircam_linearity_analyse	
7.7	vircam_twilight_combine	
7.8	vircam_mesostep_analyse	
7.9	vircam_persistence_analyse	90
7.1	0 vircam_crosstalk_analyse	91
7.1	1 vircam_jitter_microstep_process	92
7.1	2 vircam_standard_process	94
8	Validation tests	97
9	Development Plan	101
10	Appendix: QC1 Parameters	
11 .	Appendix: DRS Dictionary	110
12	Appendix: Raw FITS Header	114

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	5 of 124

Figures

Figure 3-1 Relationship between recipes, calibration data and data products	25
Figure 3-2 Association Map relating Calibration Observations, Recipes and	
Calibration Products	26
Figure 3-3 vircam reset combine	27
Figure 3-4 vircam dark combine	27
Figure 3-5 vircam badpix mask	28
Figure 3-6 vircam dome flat combine	28
Figure 3-7 vircam detector noise	29
Figure 3-8 vircam linearity analyse	29
Figure 3-9 vircam twilight combine	30
Figure 3-10 vircam illumination analyse	31
Figure 3-11 vircam mesotep analyse	32
Figure 3-12 vircam persistence analyse	33
Figure 3-13 vircam crosstalk analyse	34
Figure 3-14 vircam sky flat combine	35
Figure 3-15 vircam jitter microstep process	36
Figure 4-1 A Simulated VIRCAM readout shown displayed in the ESO-VLT Real	-
Time Display Tool	37
Figure 4-2 Synthetic VISTA data shown organised by GASGANO	39

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	6 of 124

Spacing page

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	7 of 124

1 Introduction

This document forms part of the package of documents for the design of the Data Flow System for VISTA, the Visible and Infra-Red Survey Telescope for Astronomy.

1.1 Scope

This document describes the VISTA Infra-Red Camera Data Reduction Library Design for the output from the 16 Raytheon VIRGO IR detectors in the Infra Red-Camera for VISTA (VIRCAM). The baseline requirements for calibration are included in the VISTA Infra-Red Camera Data Flow System User Requirements [AD2], and the Calibration Plan is described in [AD3].

1.2 Applicable Documents

- [AD1] Data Flow for the VLT/VLTI Instruments Deliverables Specification, VLT-SPE-ESO-19000-1618, issue 2.0, 2004-05-22.
- [AD2] VISTA Infra Red Camera DFS Impact, VIS-SPE-IOA-20000-00001, issue 1.2, 2005-05-09.
- [AD3] VISTA Infra Red Camera DFS Calibration Plan, VIS-SPE-IOA-20000-00002, issue 1.2, 2005-08-12.
- [AD4] VISTA Infra Red Camera DFS Data Reduction Library Specification, VIS-SPE-IOA-20000-00003, issue 1.0, 2005-02-08.
- [AD5] Data Interface Control Document, GEN-SPE-ESO-19940-0794, issue 3, 2005-02-01.
- [AD6] Common Pipeline Library User Manual, VLT-MAN-ESO-19500-2720, issue 2.0.1, 2005-04-14
- [AD7] Common Pipeline Library Reference Manual, VLT-MAN-ESO-19500-2721, issue 2.0, 2005-04-08

1.3 Reference Documents

- [RD 1] VISTA IR Camera Software Functional Specification, VIS-DES-ATC-06081-00001, issue 2.0, 2003-11-12.
- [RD 2] *IR Camera Observation Software Design Description*, VIS-DES-ATC-06084-0001, issue 3.2 2005-02-24.
- [RD 3] VISTA Science Requirements Document, VIS-SPE-VSC-00000-0001, issue 2.0, 2000-10-26
- [RD 4] Overview of VISTA IR Camera Data Interface Dictionaries, VIS-SPE-IOA-20000-0004, 0.1, 2003-11-13
- [RD 5] Definition of the Flexible Image Transport System (FITS), NOST 100-2.0
- [RD 6] The FITS image extension, Ponz et al, Astron. Astrophys. Suppl. Ser. 105, 53-55, 1994
- [RD 7] Representations of world coordinates in FITS, Griesen, & Calabretta, A&A, 395, 1061.2002
- [RD 8] Representations of celestial coordinates in FITS, Calabretta & Griesen, A&A, 395, 1077, 2002

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	8 of 124

- [RD 9] Detectors and Data Analysis Techniques for Wide Field Optical Imaging, Irwin M.J., 1996, Instrumentation for Large Telescopes, VII Canary Islands Winter School, eds. J.M. Rodríguez Espinosa, A. Herrero, F. Sánchez, p35. Also available from <u>http://www.ast.cam.ac.uk/~mike/processing.ps.gz</u>
- [RD 10] *INT WFS pipeline processing,* Irwin M and Lewis J, New Astronomy Reviews, **45**, Issue 1-2, p105, 2001.
- [RD 11] VISTA Data Flow System: pipeline processing for WFCAM and VISTA, Irwin et al, Ground-based telescopes, ed. Oschmann, proc SPIE, 5493, p411, 2004

[RD 12] Automatic analysis of crowded fields, Irwin M. 1985 MNRAS 214,575

- [RD 13] Understanding Robust and Exploratory Data Analysis, Hoaglin, Mosteller & Tukey 1983, Wiley.
- [RD 14] *Analysis of astronomical images using moments*, Stobie R, British Interplanetary Journal (Image Processing), **33**, p323, 1980

1.4 Abbreviations and Acronyms

2MASS	2 Micron All Sky Survey
ADU	Analogue to Digital Unit
CDS	Correlated Double Sampling
DFS	Data Flow System
DIT	Digital Integration
FITS	Flexible Image Transport System
FWHM	Full Width at Half Maximum
HOWFS	High-Order Wavefront Sensor
LUT	Look Up Table
MAD	Median Absolute Deviation from median
MEF	Multi-Extension FITS
NDR	Non-Destructive Read
RHS	Right Hand Side
RRR	Reset-Read-Read mode
VDFS	VISTA Data Flow System
VIRCAM	VISTA Infra Red Camera
VISTA	Visible and Infrared Survey Telescope for Astronomy
WCS	World Coordinate System
WFCAM	Wide Field Camera (on UKIRT)

1.5 Glossary

CDS

Correlated-Double Sampling; before the charge of each pixel is transferred to the output node of the detector, the output node is reset to a reference value. The pixel charge is then transferred to the output node. The final value of the charge assigned to this pixel is the difference between the reference value and the transferred charge.

Confidence Map An integer array, normalised to a median of 100%, which is associated with an image. Combined with an estimate of the

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	9 of 124

	sky background variance of the image, it assigns a relative
	weight to each pixel in the image and automatically factors
	in an exposure map. Bad pixels are assigned a value of 0. It
	is especially important in image filtering, mosaicing and
DAG	Stacking.
DAS	Data Acquisition System
DII	summed digitally
Exposure	The stored product of many individual integrations that
F ••• ••	have been co-added in the DAS. The sum of the integration
	times is the exposure time.
Integration	A simple snapshot, within the DAS , of a specified elapsed
8	time. This elapsed time is known as the integration time.
Jitter (pattern)	A pattern of exposures at positions each shifted by a small
	movement (<30 arcsec) from the reference position. Unlike
	a microstep the non-integral part of the shifts is any
	fractional number of pixels. Each position of a jitter pattern
	can contain a microstep pattern.
Mesostep	A sequence of exposures designed to completely sample
	across the face of the detectors in medium-sized steps, in
	order to monitor residual systematics in the photometry.
Microstep (pattern)	A pattern of exposures at positions each shifted by a very
	small movement (<3 arcsec) from the reference position.
	Unlike a jitter the non-integral part of the shifts are exact
	fractions of a pixel, which allows the pixels in the series to
	be interlaced in an effort to increase resolution. A microstep
	pattern can be contained within each position of a jitter
0 P	pattern.
OB	Observation Block
Object	In the context of image analysis, an astronomical object.
Pawprint	16 non-contiguous images of the sky produced by
	VIRCAM with its 16 non-contiguous chips (see Fig 2-2 of
	[AD3]). The name is from the similarity to the prints made
	by the padded paw of an animal (the terminology was more appropriate to 4 ship someros)
Prosot	A telescope slaw to a new position requiring a
I lesel	A telescope siew to a new position requiring a reconfiguration of various telescope systems
Dobust Estimato	A statistical estimator that is resilient to small perturbations
Kobust Estimate	on the assumed shape of the underlying distribution
Tile	A filled area of sky fully sampled (filling in the gaps in a
	nawprint) by combining multiple nawprints Because of
	the detector spacing the minimum number of pointed
	observations (with fixed offsets) required for reasonably
	uniform coverage is 6 which would expose each piece of
	sky, away from the edges of the tile, to at least 2 camera
	pixels. The pipeline does not combine pawprint s into tiles.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	10 of 124

2 Mathematical Description

In this section we include a mathematic description of some of the methods we will use to calibrate and correct data from VIRCAM. The main technical challenges in processing VISTA data stem from the fact that: IR detectors are currently inherently more unstable than their optical counterparts; the sky emission, roughly 100 times brighter than most objects of interest, varies in a complex spatial and temporal manner; and the large data volume that arises from NIR mosaic cameras. To minimise the subsequent data volume several basic pre-processing steps will be carried out in the VISTA data-acquisition system, including reset-correction and co-addition of successive DITs from the same exposure.

The first stage of the VDFS pipeline will be to apply a linearity correction as outlined in section 2.2. Subsequent processing steps including: dark and reset-anomaly correction; flat-fielding and inter-channel gain correction; and sky artefact removal (e.g. fringe patterns), are designed to remove the instrumental and residual sky signatures from the images.

The algorithms used in the VIRCAM pipeline are the result of 25 years development in the analysis of digital images. An excellent and detailed review of the mathematical techniques involved in wide-field image analysis is given in [RD 9]. In particular, the robust estimator is detailed and an in-depth description of image detection and parameterization, as used in section 2.13, is given. Several of the effects included in this section may not even exist in VIRCAM data; it is prudent however to make arrangements for dealing with such issues if early experience with the data shows the effects to be present.

We outline in the following sections the salient points of the mathematical operations to be performed, for further detail see [AD2], [AD3] and [AD4].

2.1 Reset Correction

As with most electronic detectors infrared detectors are given a pedestal bias level by the driving electronics. As such the first step in any reduction of such data is to remove that bias. For VIRCAM this will be done in the DAS. This removes the need for explicit bias removal in the pipeline.

2.2 Non-Linearity

The Calibration Plan [AD3] lays out the necessity and the methodology for calibrating and correcting for the expected non-linearity in the response of the detector system to incident radiation.

2.2.1 Correcting for non-linearity

In default CDS reset-read-read (RRR) mode, downstream of the data acquisition system (DAS) the output that we see is

$$\Delta I' = I'_2 - I'_1 = f(I_2) - f(I_1)$$
(2-1)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	11 of 124

where I'_1 and I'_2 denote the non-linear first (i.e. the reset-frame) and second readouts respectively and I_1 and I_2 the desired linear quantities. The non-linear function f(I)maps the distortion of the desired linear counts to the non-linear system I'. If we define the inverse transform g(I') that maps measured counts I' to linearized counts Ias the inverse operator $g() = f^{-1}()$ then

$$I = g(I')$$
 and $I_1 = g(I'_1)$ $I_2 = g(I'_2)$ (2-2)

If I'_1 and I'_2 were directly available this is a one-to-one mapping and can be done efficiently and accurately using Look Up Tables (LUT). This is the conventional way of implementing the correction prior to other image manipulation operations.

However, if I'_1 and I'_2 are not separately available and all we have to work from is the difference $\Delta I'$ then a simple LUT transformation is not possible.

For example, taking the simplest case where the illumination level across the detector has not changed during the course of the RRR and no on-board co-addition is happening then, in principle given only ΔI and knowledge of the timing of the RRR operations we can deduce I_1 and I_2 by using the effective integration time for each to estimate their scaling to the measured difference ΔI such that,

$$I_1 = k\Delta I$$
 and $I_2 = (1+k)\Delta I$ (2-3)

Unfortunately, the ratio k will not be constant for the non-linear quantities I'_1 and I'_2 forcing us to adopt a scheme along the following lines.

Given $\Delta I'$ and defining the non-linear operator f() as a polynomial with coefficients a_m (typically up to quartic) we have

$$\Delta I' = \sum_{m} a_{m} (I_{2}^{m} - I_{1}^{m}) = \sum_{m} a_{m} [(1+k)^{m} \Delta I^{m} - k^{m} \Delta I^{m}]$$
(2-4)

The quantity we want ΔI is buried in the non-linearity of the RHS and we have to solve an equation like this for every pixel. This is possible, and relatively simple to program using something like a Gauss-Seidel iterative scheme, but is more inefficient than a direct mapping.

If we wanted to use a completely general LUT approach we would require a 2D LUT for all possible values of I_1 and I_2 i.e. $65k \times 65k$ in size, or 4.3×2 Gbytes. Most likely we would need a different correction for each "channel" making a total of 256×8.6 Gbytes = 2.2 Tbytes of LUT for the VIRCAM! Of course if the range of values of

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	12 of 124

k is limited via exposure time quantisation this decreases the size of the total number of LUTs required considerably for the constant illumination case, but would be an ugly and possibly impractical solution.

Practical considerations (e.g. data volume), suggest two alternative solutions for nonlinearity correction: either correct the individual frames directly in the DAS by measuring and downloading the appropriate LUTs, or polynomial coefficients, to the DAS; or use a non-linear inversion on the reset-corrected frames as outlined here. This methodology is not generally applicable, e.g. to multi-NDR/gradient fitting readouts, but is directly applicable to co-added (or co-averaged) frames of the same exposure times, assuming constant illumination over the series.

For reset-corrected data, the non-linear inversion is competitive with complex operations on LUTs and much simpler to implement. It also has the added advantage of removing all aspects of the non-linearity correction from the DAS. The main disadvantages are the method is restricted to CDS RRR mode, and if the illumination level is rapidly varying (e.g. twilight) the effective scale factors k_i may be hard to compute accurately - although for all realistic practical situations the knock-on effect is likely to be negligible.

2.2.2 Measuring non-linearity

If all that is available are reset-corrected data from say a time series of dome flats, it is still feasible to directly compute the non-linearity coefficients.

Given a series of measurements $\{i\}$ of $\Delta I'_i$ and using the previous notation and polynomial model

$$\Delta I'_{i} = \sum_{m} a_{m} (I_{2}^{m} - I_{1}^{m}) = \sum_{m} a_{m} \Delta I_{i}^{m} [(1 + k_{i})^{m} - k_{i}^{m}]$$
(2-5)

where k_i are the exposure ratios under the constant illumination. In general $\Delta I_i = st_i$ where t_i is the exposure time of the *i*th reset-corrected frame in the series and *s* is a fixed (for the series) unknown scale factor. The k_i are computable from a knowledge of the exposure times and the reset-read overhead, t_i and $\Delta I'_i$ are measured quantities leaving the polynomial coefficients a_m and the scaling *s* to be determined. Thus the model is defined by

$$\Delta I'_{i} = \sum_{m} a_{m} (I_{2}^{m} - I_{1}^{m}) - \sum_{m} a_{m} s^{m} t_{i}^{m} [(1 + k_{i})^{m} - k_{i}^{m}]$$
(2-6)

and can be readily solved by standard linear least-squares methods using the following sleight-of-hand. Since the scaling s and hence the polynomial solution

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	13 of 124

 a_m are coupled, by simply (and logically) requiring in the final solution $a_1 = 1$, computation of *s* can be completely avoided.

Rewriting the previous equation in the following form makes this more apparent

$$\Delta I'_{i} = \sum_{m} (a_{m} s^{m}) t^{m}_{i} [(1+k_{i})^{m} - k^{m}_{i}] = \sum_{m} b_{m} t^{m}_{i} [(1+k_{i})^{m} - k^{m}_{i}]$$
(2-7)

where now b_m are the coefficients to be solved for. The final step is to note that

$$a_m = b_m / s^m = b_m / b_1^m$$
 (2-8)

since by definition $a_1 = 1$.

2.3 Gain Correction

In the case of a single detector camera the mean flat field image is normalised to a value of 1. This ensures that when the flat field correction is done the average counts in the output image is the same as in the input. For multi-detector instruments, we normalise the mean flat field image for each detector by:

$$V = \frac{\sum_{i=1}^{N} \langle I \rangle_i}{N}$$
(2-9)

where $\langle I \rangle_i$ is a robust estimate of the average flux in the combined flat field image for the *i*th detector. Normalising in this way ensures that when doing flat field correction we also include a factor that removes the differences in mean gain of each detector.

2.4 Measurement of Read Noise and Gain

The read noise and gain can be measured using two dome flat frames of similar illumination and two similarly observed (in terms of exposure and integration times) dark frames. Forming the difference of the two flat frames gives a variance for the difference frame σ_f^2 . Doing the same for the two dark frames yields σ_d^2 . If the background means of one of the flat and dark frames are locally: m_f and m_d the local gain in electrons per ADU is:

$$\varepsilon = (m_f - m_d) / (\sigma_f^2 - \sigma_d^2)$$
(2-10)

and the readout noise in electrons is

	Data Dala di a	Deel	VIS SDE IOA 20000 0010
VISTA	Data Reduction	Doc.	V13-3FE-10A-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	14 of 124

 $\sigma_{ro} = \varepsilon \sigma_d / \sqrt{2}$ (2-11)

2.5 Dark-correction, flat-fielding and sky-correction

If the fringe spatial pattern is stable and if flat fields can be generated without fringing present, it is possible to decouple sky correction and fringe correction and apply a defringing method similar to the one we have developed for optical imaging [RD 11]. This involves creating a series of master fringe frames which are scaled by a suitable factor for each object frame. The scale factors are adjusted to minimise the fringe pattern in the processed frame.

Standard NIR processing recipes often subtract sky first and then flat-field. We can see why this can be advantageous compared with dark-correcting, flat-fielding and sky-correcting by considering the following encapsulation of the problem

$$D(x, y) = ff(x, y)[S(x, y) + F(x, y) + O(x, y) + T(x, y)] + dc(x, y)$$
(2-12)

where D(x, y) is observed, ff(x, y) is the flat-field function, S(x, y) is the sky illumination, F(x, y) is the fringe contribution, O(x, y) is the object contribution, T(x, y) is the thermal contribution, dc(x, y) is the dark current, and without loss of generality we have excluded any explicit wavelength and time-dependence for clarity.

Stacking a series of dithered object frames with rejection produces an estimate of the terms

$$\hat{I}(x,y) = ff(x,y)[S(x,y) + F(x,y) + T(x,y)] + dc(x,y)$$
(2-13)

therefore,

$$D(x, y) - \hat{I}(x, y) = ff(x, y)O(x, y)$$
(2-14)

obviating the need for dark-correcting and fringe removal as both separate data gathering requirements and as separate data processing steps; and minimising the effect of systematic and random errors in the flat-field function by removing the largest potential error terms.

In the event that the dark correction stage fails to remove the reset anomaly completely, the residual background variation is analogous to the problem of dealing with short-term variations in sky structure and can be dealt with using the methodology above.

The caveats here of course are that this method may well remove parts of large extended objects, large area nebulosity, and large low surface brightness objects and so on, unless suitable offset skies are used in the sky frame construction. Unfortunately this then opens the door for spatial and temporal variability of the sky background, leaving residual patterns.

The optimal strategy to use depends on the stability of the flat-fields, and the time constants for sky fringe pattern variations, and will be dealt with by assessing these characteristics during commissioning and then invoking suitable processing recipes.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Librar y Dosign	Date:	2005-08-12
System		Page:	15 of 124

The alternative is to treat the dark correction dc(x, y), flat field ff(x, y), and fringe pattern F(x, y), as accurately known master library frames, in which case data processing involves solving the following variant of the problem

$$D(x, y) = ff(x, y) [S(x, y) + k.F(x, y) + O(x, y) + T(x, y)] + dc(x, y)$$
(2-15)

where k is a scale factor to be determined by the fringe-removing algorithm. In this case applying the master frames leads to

$$D'(x, y) = S(x, y) + O(x, y) + T(x, y)$$
(2-16)

reducing the problem to one of detecting astronomical objects on an additive, slowly spatially varying, background. This could be the method of choice for analysing large scale astronomical surface brightness variations.

2.6 Fringe Removal

Atmospheric emission lines may cause interference fringes to be present in the sky background at the level of a few percent of sky. Since the fringes can have complex spatial structures on a range of physical scales on the detector, removing them successfully is a multi-stage process.

First we note that fringing is an additive effect, so if removed as part of a procedure that used night sky data as a flat field source, this would introduce a systematic error in the photometry. To perform sky fringe removal effectively requires the flat fielding to be decoupled from the defringing by, for example, using twilight sky exposures to construct the flat-field frames, where the contribution from sky emission lines is negligible.

Consequently, the first stage of the process is to flat-field the dark sky science data correctly and to use a sequence of offset sky exposures to construct a fringe frame. These input frames are combined after suitable scaling to match the background levels and sigma-clipping to remove astronomical objects.

The defringing process then requires solving for the fringe scale factor k in the following equation:

$$D(x, y) = S(x, y) + kF(x, y) + O(x, y) + T(x, y)$$
(2-17)

where S is the sky contribution, O is the astronomical object contribution and T is the contribution from the thermal background.

Since the fringe pattern is characterised by more rapidly varying spatial structure than the sky and thermal contributions, the overall background variation on the target and fringe frame is temporarily removed by use of a robust low-pass filter such that:

$$D'(x, y) \approx kF(x, y) + O(x, y) \tag{2-18}$$

The objects are localised, therefore a simple robust background noise estimator based on the Median of the Absolute Deviation (MAD) from the median can be used iteratively to find the scale factor k that minimises the background noise in D'(x, y).

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Librar y Dosign	Date:	2005-08-12
System		Page:	16 of 124

Allowing the scale factor to vary ensures that the relative contribution of the sky emission lines, which may vary in strength, is correctly dealt with.

More complex options involving decomposing the seasonal fringe patterns into eigenfringe maps may be required at later stages in the processing but this is outside of the scope of the standard calibration pipeline.

The success, or otherwise, of fringe removal is monitored by the computed fringe map scale factor and also by a robust measure of the change (ratio) of the global background noise/variation after fringing. This is encoded in the FRINGE_RATIO QC1 parameter.

2.7 Image persistence

Astronomical images, and artefacts from preceding frames, can persist and be present on the current image. Strategies for dealing with this involve assessing the time decay characteristics and adjacency effects (i.e. image spreading) if present. In the case of no image adjacency effects, correcting for image persistence will either involve updating and maintaining a persistence mask (for combination with the confidence map), or accumulating with suitable temporal decay, a persistence map, running over a night if necessary, to subtract from the current image. For example, in the simplest case

$$I_{k}^{obs}(x, y, t) = I_{k}^{true} + f \times I_{k-1}^{obs}(x, y, t - \Delta t) \times e^{-\Delta t/\tau}$$
(2-19)

where k is the image sequence number, f is the fraction of the image persisting after frame reset(s), Δt is the time interval between frames, and τ is the persistence decay constant which may be different for each detector.

It is possible that image persistence may include some sort of adjacency effects. These will have to be characterised at commissioning.

2.8 Crosstalk

Images from one detector channel may produce secondary images (ghosts) on other channels either positive or negative in sign and may also even cross from one detector to another. In a stable environment, it is feasible to measure the contribution of crosstalk from one channel to another by using bright point-like sources, and thereby define a comprehensive crosstalk matrix $C_{j,k}$. Since this is environment specific, determining the final form of this matrix will be one of the commissioning tasks, although earlier laboratory-based measurements will be used to characterise its likely impact and to investigate ways of minimising the effect.

Providing the cross-talk terms are small (i.e. <1%, the most likely scenario), then the following simple single-pass additive correction scheme will be used to correct for this problem,

$$I'_{j} = I_{j} - \sum_{k \neq j} I_{j} C_{j,k}$$
(2-20)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	17 of 124

where I_j is the observed frame and I'_j the corrected version. The typical error in making a single pass correction is approximately $\langle C_{j,k} \rangle_{j\neq k}^2$, which governs the requirement on the magnitude of the cross-talk terms. Note also that the matrix *C* will in general not be symmetric.

2.9 Astrometric Calibration

From the optical design studies of VISTA we know that, to a good approximation, the astrometric distortion shows negligible variation with wavelength and is well described by a radially symmetric polynomial distortion model of the form

$$r_{true} = k_1 \times r + k_3 \times r^3 + k_5 \times r^5 + \dots$$
 (2-21)

where r_{true} is an idealised angular distance from the optical axis, r is the measured distance, and k_1 is the scale at the centre of the field, usually quoted in arcsec/mm. VISTA will have a central field scale, i.e. k_1 value of roughly 17.09 arcsec/mm. The term due to k_5 is usually negligible and, until real sky data is available, is not worth pursuing, since other similarly sized distortions may be present. Dropping this term and rearranging the preceding equation to a more convenient form gives

$$r_{true} = r' \times \left(1 + \frac{k_3}{k_1^3} \times r'^2\right) = r' + k \times r'^3$$
(2-22)

where r' is the measured distance from the optical axis in arcsec using the k_1 scale. If we convert all units to radians the "r-cubed" coefficient is conveniently scaled (in units of radians/radian³) and has a theoretical value of around 42 for VISTA, but will have a slight wavelength dependence.

Although this type of distortion generally presents no problem for accurate calibration of individual pointings, it can lead to various complications when stacking data taken at various locations, e.g. dither sequences. This is caused by the differential non-linear distortions across individual detectors being comparable to, or larger than, the pixel size of the detector. In these cases stacking involves resampling and interpolation of some form. While these are inevitable in combining pointings to form contiguous tiled regions, they may be avoided at earlier stages, such as stacking individual detector dither sequences, by suitably limiting dither offsets and thereby both simplify and speed up the data processing.

The effective scale due to the radial distortion is given by

$$dr_{true} / dr' = 1 + 3k \times r'^2$$
(2-23)

which describes the local change in relative pixel scale as a function of radial distance. For example, for VISTA at 0.8 degree radius, the differential distortion term is about 2.5%. This means that a 10 arcsec shift in the centre corresponds to a 10.25 arcsec shift at the outer corners of the arrays. For the outer detectors a large fraction of this distortion occurs across individual detectors.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	18 of 124

In anticipation of this problem, we will implement a range of interpolation schemes that offer a trade off between maintaining independent pixel noise and resolution degradation.

For further information see the report at

http://www.ast.cam.ac.uk/vdfs/docs/reports/astrom/.

2.10 World Coordinate System

We intend, at least initially, to characterise the WCS using the ZPN projection [RD 7] and [RD 8], i.e. ARC + polynomial distortion, using a 3^{rd} order parameterisation (equation 2.22). The coefficients for this are encoded in the FITS header using the keywords PV2_1 and PV2_3.

2.11 Effect of Scale Change on Photometry

In addition to astrometric effects the change in scale as a function of radius also has photometric implications. The aim of conventional flat fielding is to create a flat background by normalising out perceived variations from (assumed) uniformly illuminated frames. If the sky area per pixel changes then this is reflected in a systematic error in the derived photometry.

However, since it much simpler to deal with "flat" backgrounds, this problem is either usually ignored or corrected during later processing stages, together with other systematic photometry effects. The effect is simplest to envisage by considering what happens to the area of an annulus on sky when projected onto the detector focal plane. The sky annulus of $2\pi sds$ becomes $2\pi r'dr'$ on the detector, which using k to denote k_3/k_1 leads to a relative area of

$$(1 + k \times r'^2).(1 + 3k \times r'^2) \approx (1 + 4k \times r'^2)$$
 (2-24)

or in other words roughly $4 \times$ the linear scale distortion.

However, since other more unpredictable factors, such as scattered light, will also play a significant role, it is simpler procedurally to bundle all the effects together and correct all the photometric systematics in one operation. The VDFS calibration plan [AD3] describes a procedure for achieving this as an illumination correction.

2.12 Confidence Maps

We define a confidence map c_{ij} as a normalised¹ i.e. $\langle c_{i,j} \rangle_j = 1$ inverse variance weight map denoting the "confidence" associated with the flux value in each pixel *j* of frame *i*. This has the advantage that the map is always finite and can also be used to encode for hot, bad or dead pixels, by assigning zero confidence. Furthermore, after image stacking the confidence map also encodes the effective relative exposure time for each pixel, thereby preserving all the relevant intra-pixel information for further optimal weighting.

¹ In practice we use a 16-bit integer map such that the median level is 100%

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	19 of 124

The initial confidence map for each frame is derived from regular analysis of the master calibration flat-field and dark frames and is unique for each filter/detector combination due to the normalisation. As such it also encodes individual pixel sensitivities and also allows, for example, vignetted regions to be correctly weighted when combining frames. To use the confidence maps for weighted co-addition of frames then simply requires an overall estimate of the average noise properties of the frame. This can readily be derived from the measured sky noise, in the Poisson noise-limited case, or from a combination of this and the known system characteristics (e.g. gain and readout noise).

All processed frames (stacked individual detectors, tiled mosaiced regions) have an associated derived confidence map which is propagated through the processing chain in the following manner.

Defining the signal s_i in frame *i* with respect to some reference signal level s_{ref} as $s_i = f_i s_{ref}$, where f_i denotes the relative throughput (which in photometric conditions would be ∞ exposure time), the optimum weight to use for combining the *j*th pixel of (suitably aligned) frames i in order to maximise the signal:to:noise of sky-limited objects is defined by

$$x'_{j} = \frac{\sum_{i} w_{ij} x_{ij}}{\sum_{i} w_{ij}} \qquad w_{ij} = c_{ij} f_{i} / \sigma_{i}^{2}$$
(2-25)

where σ_i^2 is the average noise variance in frame *i*, x_{ij} is the flux in pixel *j* on the *i*th frame and x'_j is the combined output flux. The effective exposure time is that of s_{ref} .

The output confidence map, which is $\propto output noise_j^{-2}$, is therefore given by

$$c'_{j} = \frac{\left(\sum_{i} c_{ij} f_{i} / \sigma_{i}^{2}\right)^{2}}{\sum_{i} c_{ij} f_{i}^{2} / \sigma_{i}^{2}}$$
(2-26)

Special cases of this occur when $f_i = 1$, e.g. equal length exposures in stable photometric conditions, or the more general Poisson noise limited case, when $f_i / \sigma_i^2 = 1$, and the special variant of this when $f_i = 1$. These cases are given below, prior to renormalisation.

$$c'_{j} = \sum_{i} c_{ij} / \sigma_{i}^{2} \qquad c'_{j} = \frac{(\sum_{i} c_{ij})^{2}}{\sum_{i} c_{ij} f_{i}} \qquad c'_{j} = \sum_{i} c_{ij} \qquad (2-27)$$

2.13 Catalogue generation

In order to provide quality control, and astrometric and photometric calibration information, it is necessary to generate detected object (i.e. stars, galaxies) catalogues for each target frame.

The catalogue generation software (e.g. [RD 12], [RD 9]) will make direct use of the confidence maps for object detection and parameterisation, and will produce the requisite information via the use of standard object descriptors. For completeness we

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Librar y Dosign	Date:	2005-08-12
System		Page:	20 of 124

give here a brief description of how this will be accomplished by use of the following steps:

- estimate the local sky background over the field and track any variations at adequate resolution to eventually remove them;
- detect objects/blends of objects and keep a list of pixels belonging to each blend for further analysis;
- parameterise the detected objects, i.e. perform astrometry, photometry and some sort of shape analysis.

2.13.1 Background analysis and object detection

The possibly-varying sky background is estimated automatically, prior to object detection, using a combination of robust iteratively-clipped estimators.

Any variation in sky level over the frame will be dealt with by forming a coarsely sampled background map grid. Within each background grid pixel, typically equal to 64×64 image pixels, an iteratively k-sigma clipped median value of "sky" will be computed based on the histogram of flux values within the grid pixel zone. A robust estimate of sigma can be computed using the Median of the Absolute Deviation (MAD) from the median (e.g. [RD 13]). This will then be further processed to form the frame background map (e.g. [RD 9]).

After removing the, possibly, varying background component, a similar robust estimate of the average sky level and sky noise per pixel can be made. This forms part of the quality control measures and also helps to robustly determine the detection threshold for object analysis.

Individual objects will be detected using a standard matched filter approach (e.g. [RD 12]). Since the only images difficult to locate are those marginally above the sky noise, assuming constant noise is a good approximation (after factoring in the confidence map information) and the majority of these objects will have a shape dominated by the point spread function (PSF), which thereby defines the filter to use.

2.13.2 Image parameterisation

The following image parameters can be computed efficiently and are directly used as part of the image quality control and calibration analysis.

Isophotal Intensity - the integrated flux within the boundary defined by the threshold level; i.e. the 0^{th} object moment

$$I_{iso} = \sum_{i} I(x_i, y_i)$$
(2-28)

For Gaussian images, this is related to the total intensity by the factor $(1 - I_t / I_p)^{-1}$, where I_p is the peak flux and I_t the threshold level (all relative to sky).

Position - computed as an intensity-weighted centre of gravity; i.e. 1st moment

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow	Lioiui y Dosign	Date:	2005-08-12
System		Page:	21 of 124

$$x_{0} = \sum_{i} x_{i} \cdot I(x_{i}, y_{i}) / \sum_{i} I(x_{i}, y_{i})$$

$$y_{0} = \sum_{i} y_{i} \cdot I(x_{i}, y_{i}) / \sum_{i} I(x_{i}, y_{i})$$
(2-29)

Covariance Matrix - the triad of intensity-weighted 2nd moments is used to estimate the eccentricity/ellipticity, position angle and intensity-weighted size of an image

$$\sigma_{xx} = \sum_{i} (x_{i} - x_{0})^{2} . I(x_{i}, y_{i}) / \sum_{i} I(x_{i}, y_{i})$$

$$\sigma_{xy} = \sum_{i} (x_{i} - x_{0}) . (y_{i} - y_{0}) . I(x_{i}, y_{i}) / \sum_{i} I(x_{i}, y_{i})$$

$$\sigma_{yy} = \sum_{i} (y_{i} - y_{0})^{2} . I(x_{i}, y_{i}) / \sum_{i} I(x_{i}, y_{i})$$
(2-30)

The simplest way to derive the ellipse parameters from the 2nd moments is to equate them to an elliptical Gaussian function having the same 2nd moments. It is then straightforward to show (e.g. [RD 14]) that the scale size, $\sqrt{\sigma_{rr}}$, is given by $\sigma_{rr} = \sigma_{xx} + \sigma_{yy}$; the eccentricity, $ecc = \sqrt{(\sigma_{xx} - \sigma_{yy})^2 + 4.\sigma_{xy}^2} / \sigma_{rr}$; and the position angle, θ is defined by, $\tan(2\theta) = 2.\sigma_{xy} / (\sigma_{yy} - \sigma_{xx})$. The ellipticity, *e*, which is simpler to interpret for estimating potential image distortions (e.g. trailing), is related to the eccentricity by $e = 1 - \sqrt{(1 - ecc)/(1 + ecc)}$

Areal Profile - a variant on the radial profile, which measures the area of an image at various intensity levels. Unlike a radial profile, which needs a prior estimate of the image centre, the areal profile provides a single pass estimate of the profile

$$ArealProfile \rightarrow T + p_1, T + p_2, T + p_3, \dots, T + p_m$$
(2-31)

where p_j ; j = 1,...m are intensity levels relative to the threshold, *T*, usually spaced logarithmically to give even sampling.

The peak height, I_p , is a useful related addition to the areal profile information and is defined as

$$I_{p} = \max[I(x_{i}, y_{i})]_{i}$$
(2-32)

or alternatively measured by extrapolation from the areal profile if the image is saturated. The areal profile provides a direct method to estimate the seeing of objects in an image by enabling the average area of stellar images (point sources) at half the peak height, $\langle A \rangle$, to be estimated. The seeing, or FWHM, is then given by *FWHM* = $2\sqrt{\langle A \rangle / \pi}$.

Finally a series of aperture fluxes are required for object morphological classification (see below).

Aperture flux is defined as the integrated flux within some radius r of the object centre

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Lioiui y Dosign	Date:	2005-08-12
System		Page:	22 of 124

$$I_{ap}(r) = \sum_{i=r}^{N} I_i - N \times sky$$
(2-33)

Where boundary pixels are weighted pro-rata (soft-edged aperture photometry). A series of these is used to define the curve-of-growth, $I_{an}(r)$ -v- r, for each object.

2.13.3 Morphological Classification

The object detection software will produce a series of background-corrected flux measures for each object in a set of "soft-edged" apertures of radius r/2, $r/\sqrt{2}$, r, $\sqrt{2r}$, 2r 32r, where r is typically fixed as the median seeing for the site+telescope+camera. The average curve-of-growth for stellar images is used to define automatically an aperture correction for each aperture used and also forms the basis for object morphological classification (required for isolating stellar images for seeing and trailing quality control).

The curve-of-growth of the flux for each object is compared with that derived from the (self-defining) locus of stellar objects, and combined with information on the ellipticity of each object, to generate the classification statistic. This statistic is designed to preserve information on the "sharpness" of the object profile and is renormalised, as a function of magnitude, to produce the equivalent of an N(0,1) measure, i.e. a normalised Gaussian of zero-mean and unit variance. Objects lying within 2-3 σ are generally flagged as stellar images, those below 3σ (i.e. sharper) as noise-like, and those above 2-3 σ (i.e. more diffuse) as non-stellar.

A by-product of the curve-of-growth analysis is the estimate of the average PSF aperture correction for each detector.

2.14 Photometric Zeropoint

For the purposes of quality control (e.g. sky transparency and system performance) a photometric zeropoint will be determined for each observation by direct comparison of instrumental magnitudes with the magnitudes of 2MASS stars. A more accurate photometric calibration will be applied retrospectively given a complete night of observations including regular exposures in VISTA photometric standard fields.

The internal gain-correction, applied at the flat-fielding stage, should place all the detectors on a common zeropoint system (at least to first order i.e. ignoring colour equation variations between the detectors), and given a stable instrumental setup, the apparent variation of zeropoint then directly measures the change in "extinction" without the need to rely solely on extensive standard field coverage over a range in airmass. Therefore for any given observation of a star in a particular passband:

$$m^{cal} = m^{inst} + ZP - \kappa \ (X - 1) = m^{std} + ce^{std} + \varepsilon$$
(2-34)

where ZP is the zeropoint in that passband (i.e. the magnitude at airmass unity which gives 1 count/second at the detector), m^{cal} is the calibrated instrumental magnitude, m^{inst} is the measured instrumental magnitude (-2.5 × log₁₀[counts/sec]), κ is the extinction coefficient, X is the airmass of the observation, ce^{std} is the colour term to convert to the instrumental system, and ε is an error term. This assumes that the

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	23 of 124

second-order extinction term and colour-dependency of κ are both negligible. By robustly averaging the zeropoints for all the matching stars on the frame an overall zeropoint for the observation can be obtained.

Typically, the zeropoint of the instrument + telescope system should be stable throughout the night. Long-term decreases in the sensitivity of the instrument, and hence a decreasing *ZP*, could be caused by for example the accumulation of dust on the primary mirror.

On photometric nights the extinction coefficient κ should be constant in each passband. The extinction κ can be monitored through each night either by assuming the true instrumental zeropoint only varies slowly as a function of time or by making measurements over a range of airmass.

2.15 Illumination Correction

The two methods of determination of illumination correction differ in that the first described below requires a rich standard star field, but the second can be used before such a field is available.

2.15.1 Standard Star Field

Errors in the large scale structure of the illumination of the flat fields used in signature removal can cause position dependent systematic errors in photometry. This can be a result of a varying scattered light profile between twilight (nominally when the flat field exposures would have been made) and the time when the observation was done. We can map this out by first dividing an observation of a medium rich photometric standard field into cells. For each cell we define a median zero point of all the stars in that cell:

$$zp_{j} = \left\langle m^{cal} - m^{inst} \right\rangle$$
 (2-35)

(It is safe to ignore the extinction term for this exercise.) The illumination correction is then defined for each cell as:

$$ic_{j} = \langle zp \rangle - zp_{j}$$
 (2-36)

where $\langle zp \rangle$ is the median value of zp_j over all the cells. This is defined such that a star in the *j*th cell is calibrated by:

$$m^{cal} = m^{inst} + ZP - \kappa (X-1) - ic_{j}$$
 (2-37)

2.15.2 Mesostep Analysis

We assume that the spatial sensitivity of each detector can be approximated by a polynomial surface, i.e. a magnitude offset as a function of (x, y) measured from the centre of the detector, e.g.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	24 of 124

$$ZP(x,y) = \sum_{hk} a_{hk} x^h y^k$$
(2-38)

For example, in quadratic form, at positions *i* and *j*:

$$ZP(x_i, y_i) = a_{00} + a_{10}x_i + a_{01}y_i + a_{20}x_i^2 + a_{11}x_iy_i + a_{02}y_i^2$$
(2-39)

$$ZP(x_j, y_j) = a_{00} + a_{10}x_j + a_{01}y_j + a_{20}x_j^2 + a_{11}x_jy_j + a_{02}y_j^2$$
(2-40)

The difference in sensitivity/zeropoint between two positions *i* and *j* is then:

$$\Delta ZP(x_i, x_j, y_i y_j) = a_{10}(x_i - x_j) + (a_{01}(y_i - y_j) + a_{20}(x_i^2 - x_j^2) + a_{11}(x_i y_i - x_j y_j) + a_{02}(y_i^2 - y_j^2)$$
(2-41)

If we make two observations of the same star at offset positions $i(x_i, y_i)$ and $j(x_j, y_j)$, we sample this function such that the difference in magnitude measured is Δm_{ij} then:

$$\Delta m_{ij} = \Delta ZP(x_i, x_j, y_i y_j)$$
(2-42)

In the simplest case, observing the same star in a number of different places would allow one to measure the Δm_{ij} as a function of (x_i, y_i) and (x_j, y_j) . One could then fit a polynomial using least-squares and solve for the a_{hk} . The multiple observations of multiple stars in a grid across the array ensure we can solve for the polynomial coefficients accurately.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	25 of 124

3 Functional Description

Science data from VIRCAM is processed by a single recipe, namely vircam_jitter_microstep_process. Various other recipes are provided to generate the calibration data essential for instrumental-signature removal. A variation of the science recipe, vircam_standard_process, is used on observations of standard fields (which will contain many standard stars) to produce a photometric zeropoint. The recipes will work for both the Paranal and Garching pipeline environments, but it is expected that higher-quality results will be obtained at Garching where complete nights of data will be analysed.

An overview of the whole VIRCAM pipeline is illustrated in Figure 3-1.

Figure 3-1 Relationship between recipes, calibration data and data products.

The relationship between calibration observations, and the recipes used to produce final calibration frames, is illustrated in the association map in Figure 3-2.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	26 of 124

Figure 3-2 Association Map relating Calibration Observations, Recipes and Calibration Products.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	27 of 124

3.1 Recipes

The following figures illustrate the decomposition of the processing recipes into their component functions, shown in shaded yellow circles and with the leading "vircam" stripped for clarity. Open circles show further processing carried out within the recipe and shaded mauve rectangles the QC outputs.

Figure 3-3 vircam_reset_combine

Figure 3-4 vircam_dark_combine

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	28 of 124

Figure 3-6 vircam_dome_flat_combine

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	29 of 124

Figure 3-7 vircam_detector_noise

Figure 3-8 vircam_linearity_analyse

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	30 of 124

Figure 3-9 vircam_twilight_combine

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	31 of 124

Figure 3-10 vircam_illumination_analyse

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	32 of 124

Figure 3-11 vircam_mesotep_analyse

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	33 of 124

Figure 3-12 vircam_persistence_analyse

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	34 of 124

Figure 3-13 vircam_crosstalk_analyse

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	35 of 124

Figure 3-14 vircam_sky_flat_combine

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	36 of 124

Figure 3-15 vircam_jitter_microstep_process
VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	j _ 0g.	Date:	2005-08-12
System		Page:	37 of 124

4 Instrument Data Description

There is only one data format, used in both IMAGING and HOWFS modes; but note, however, HOWFS data is analysed in real time on the instrument workstation and is not passed to the pipeline, and so will not be further considered here. Data frames will be in ESO modified standard FITS format [RD 5], the ESO modifications being limited to the hierarchical header proposal, and compliant with DICB standards [AD5]. The headers are also compliant with the final World Coordinate System (WCS) specification [RD 8]. Data from the full set of chips are stored in Multi Extension Format (MEF) as 32-bit signed integers [RD 6]. Offset 16-bit format is not used because data will be co-added in the data acquisition system before output. Though not a requirement, the integer format enables the use of highly efficient lossless compression.

Figure 4-1 A Simulated VIRCAM readout shown displayed in the ESO-VLT Real-Time Display Tool

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	38 of 124

Raw VIRCAM data will contain headers from ESO standard DPR, OBS, TPL dictionaries and at least the following set of data dictionaries (and see [RD 2]):

- ESO-VLT-DIC.VIRCAM_CFG
- ESO-VLT-DIC.VIRCAM_HOWFS
- ESO-VLT-DIC.VIRCAM_ICS
- ESO-VLT-DIC.VIRCAM_OS
- ESO-VLT-DIC.VTCS
- ESO-VLT-DIC.IRACE

A full simulated FITS header is illustrated in the appendix (section 11).

A full 256MByte VIRCAM exposure simulation is shown in Figure 4-1, and two examples shown organised by GASGANO in Figure 4-2 demonstrate the compliance of the data format design with ESO data-interface standards.

The flow from raw data types and the templates which generate them, through the processing recipes and required calibration data, to final data products is shown in the data-processing table (Table 4-1, below).

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Liotur y Doorgin	Date:	2005-08-12
System		Page:	39 of 124

	GASGANO	Version: 2.1.2	psb / SunOS		7 4
File Selected files Tools Help					
					-
AR IR A	Group by Telescope	- expand	Find entry:	▼ find] 1
					1
File		CLASSIFICATION	TPL.ID	ORIGFILE	TPL.EXPNO TPL.NEXP
📑 Displaying 2 files grouped by telescope. U	nfiltered.				
🔶 🌒 ESO-VISTA					
• 61 68.A-0281(A) VIRCAM J Lewis					
Image: sector of the secto					
VIRCAM 2004-11-24T14	44:0-123 fits	JITTER OBJ	VIRCAM ima obs pa	w VIRCAM Ima.1.fits	2 6
VIRCAM 2004-11-24T15:	49:0-123 fits	JITTER OBJ	VIRCAM imp obs pa	w. VIRCAM Ima.1.fits	2 6
1100/11/2004 11 24110.	40.0.120.1120			_	
					-
▲					
/data/cass55b/psb/vi	sta/art/data/VIRCAM.20	104-11-24T15:49:0	.123.fits VIRCA	M_Ima.1.fits JITTER_OB	J
			11		7
Extension: IMAGE. WIN1.CHIP1.OUT1.	Find in header		Tind	Load Filter O Filter	🛆 Auto Display
					C mare propriet
•					•
Kewword				Value	
TELENCE.WOONSCR.STEP		1			
TELENCLWINDSCR1.STATE		OPEN			
TELENCE.WINDSCR2.STATE					
		SHUI			
TELENCL.VENT2.STATE		HALF			
TEL.ENGL.VENT3.STATE		OPEN CLORE	D		
			0		
TEL M2100P3 STATE			D		
TEL M21 OOP4 STATE		CLOSE	D		
TEL M2100P5 STATE		CLOSE	D		
TEL.M2.CENX		1.51	-		
TEL.M2.CENY		1.52			
TEL.M2.TILTX		1.53			
TEL.M2.TILTY		1.54			
TEL.M1.ACTUATORFAILED		1			
EXTENSION		IMAGE,	WIN1.CHIP1.OUT1, 1		
XTENSION		IMAGE	10		
BITPIX		32			
NAXIS		2			
NAXIS1		2048			
NAXIS2		2048			
PCOUNT		0			
GCOUNT		1			
EXTNAME		WIN1.C	HIP1.0UT1		
EXTVER		1			
		The second secon			

Figure 4-2 Synthetic VISTA data shown organised by GASGANO

DATA FILE	VIRCAM_ TEMPLATE	DRP CATG	DRP TYPE	DPR TECH	RECIPE	HEADER INPUTS	CALIB DB	PRODUCTS			
HOWFS reset frame	howfs_cal_reset	TECHNICAL	BIAS	IMAGE							
HOWFS Dark Frame	howfs_cal_dark	TECHNICAL	DARK	IMAGE							
HOWFS dome flat	howfs_cal_domeflat	TECHNICAL	FLAT,LAMP	IMAGE	HOWFS data is processed on the instrument workstation						
HOWFS wavefront	howfs_obs_exp	ACQUISITION	PSF-CALIBRATOR	IMAGE							
HOWFS wavefont	howfs_obs_wfront	ACQUISITION	PSF-CALIBRATOR	IMAGE							
Test observation	img_obs_exp	TEST	OBJECT	IMAGE	Test not processed			None			
Reset Frame	img_cal_reset	CALIB	BIAS	IMAGE	reset_combine	Exposure parameters	library reset frame	Mean reset			
Dark Frame	img_cal_dark	CALIB	DARK	IMAGE	dark_combine	Exposure parameters	library dark frame	Mean dark			
Dark Current	img_cal_darkcurrent	CALIB	DARK, DARKCURRENT	IMAGE	dark_current	Exposure parameters		Dark Current map			
Persistence sky measure	ima cal persistence	CALIB	OBJECT, PERSISTENCE	IMAGE	nersistence analyse	Exposure parameters WCS set	linearity channel table	Persistence constants			
Persistence dark measure	hitg_eur_persistence	CALIB	DARK, PERSISTENCE	IMAGE	persistence_unaryse	Exposure parameters	library flat field				
Dome Flat	img_cal_domeflat	CALIB	FLAT, LAMP	IMAGE	dome_flat_combine	Exposure parameters	library bad-pixel map library dark frame linearity channel table	Mean Dome Flat Dome confidence map			
Linearity Measure	img_cal_linearity	CALIB	FLAT, LAMP, LINEARITY	IMAGE	linearity_analyse	Exposure parameters	library dark frame channel map	Linearity channel table Bad pixel map			

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	41 of 124

DATA FILE	VIRCAM_ TEMPLATE	DRP CATG	DRP TYPE	DPR TECH	RECIPE	HEADER INPUTS	CALIB DB	PRODUCTS
Noise & Gain	img_cal_noisgain	CALIB	FLAT, LAMP, GAIN	IMAGE	detector_noise	Exposure parameters	linearity channel table	Noise and gain values
Twilight Flat	img_cal_twiflat	CALIB	FLAT, TWILIGHT	IMAGE	twilight_combine	Exposure parameters	library bad-pixel map library dark frame linearity channel table	Mean twilight flat Sky confidence map Gain correction
Cross-Talk obs	img_cal_crosstalk	CALIB	OBJECT, CROSSTALK	IMAGE	crosstalk_analyse	Exposure parameters	library dark frame linearity channel table library flat field library confidence map persistence constants	cross-talk matrix
Mesostep sequence	img_cal_illumination	CALIB	STD, ILLUMINATION	IMAGE	mesostep_analyse	Exposure parameters WCS set	library dark frame linearity channel table library flat field library confidence map persistence constant crosstalk matrix library fringe map photometric catalogue	illumination map
Standard star field	img_cal_std	CALIB	STD, FLUX	IMAGE, JITTER	standard_process	Exposure parameters WCS set	library dark frame linearity channel table library flat field library confidence map persistence constants crosstalk matrix library fringe map photometric catalogue	photometric coefficients

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Listury Design	Date:	2005-08-12
System		Page:	42 of 124

DATA FILE	VIRCAM_ TEMPLATE	DRP CATG	DRP TYPE	DPR TECH	RECIPE	HEADER INPUTS	CALIB DB	PRODUCTS		
Pawprint	ima obs. naw	SCIENCE	OBJECT	IMAGE, JITTER						
Pawprint Extd object	ning_00s_paw	SCIENCE	OBJECT, EXTENDED	IMAGE, JITTER	jitter_interostep_process			Reduced Paw		
Tile	ima obs tile	SCIENCE	OBJECT	IMAGE, JITTER	jitter_microstep_process	iittar migrostan process	iitter microsten process	libritter microsten process	library dark frame linearity channel table	table confidence
Tile extended	ling_oos_the	SCIENCE	OBJECT, EXTENDED	IMAGE, JITTER		Exposure li parameters p WCS set li	library flat field library confidence map persistence constants library fringe map crosstalk matrix	maps Object catalogues Sky map (e.g. for de-fringing		
non- standard tile pattern		SCIENCE	OBJECT	IMAGE, JITTER						
non- standard tile of extended source	img_obs_offsets	SCIENCE	OBJECT, EXTENDED	IMAGE, JITTER	jitter_microstep_process		photometric catalogue	when input criteria met)		

 Table 4-1 Data Processing Table

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	44 of 124

5 DRL Data Structures

5.1 Introduction to Data Products

The main pipeline products will be images stored as image extensions in multiextension FITS files, and derived parameters from the processing stored as FITS keyword/value pairs in the appropriate FITS header units.

All science frames will be corrected for the standard instrumental signatures such as flat fielding and dark current, and for other possible electronic artefacts, such as crosstalk, persistence and reset anomalies. In addition all pawprint images will be astrometrically and photometrically calibrated, with the calibration information being stored as FITS header keywords in each image extension. A header keyword that associates each FITS image file with its confidence map file will also be included in the primary header unit.

The pipeline will also generate detected object catalogues for each science image which will be used in deriving much of the QC and calibration information. These will be stored as multi-extension FITS binary tables with a copy of the FITS header information from the FITS image files and a one-to-one correspondence of table and image extensions. Derived QC and calibration information will be added to these FITS catalogue files and also propagated to the FITS image files as described in [AD5]. In general the pipeline products fall into one of the following classes:

Science Images:

- images of single exposures
- pawprints arising from combining (stacking) jitter and microstep sequences

Object Catalogues:

lists of detected parameterised objects for each science image (see 5.11)

Derived On-sky Calibration Information:

- Photometric zero points
- WCS coefficients
- other QC parameters (see Appendix for full specification)

Confidence Maps:

- Bad pixel masks derived from dome flat sequences
- Single image confidence maps derived from sky flats and bad pixel masks
- Stacked/interleaved image confidence maps which also include effective exposure maps

Calibration Maps:

- Master combined dark frames
- Master combined flat field images
- Master eigen-fringe frames
- Local sky maps

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Liorary 2 congri	Date:	2005-08-12
System		Page:	45 of 124

Calibration Parameters:

- Non-linearity coefficients for each data channel of each detector
- Persistence coefficients for each detector
- A 256x256 crosstalk matrix for the entire focal plane
- Illumination correction tables

The calibration parameters for illumination correction, nonlinearity, persistence and the crosstalk matrix will be stored in FITS tables as specified in the following sections.

5.2 Channel Table

Each VIRCAM detector will be split into 16 different data channels, each with its own electronics. This means that some reduction tasks will rely on knowing the location and readout timing information for each data channel. This information will be provided by the 'channel table'. Strictly speaking this is neither an intermediate nor final data product, but rather a piece of static calibration information on which much of the rest of this section relies. The information will be stored in a single FITS binary table and will be identifiable with the PRO CATG keyword value CHANTAB. The table will contain the following columns:

Column	Name	Туре	Units	Description
1	chanindex	int		Index of the data channel which is an integer from 1-256. This is a unique ID for the data channel in the context of the whole of the VIRCAM detector set.
2	channum	int		Number of the data channel, which is an integer from 1-16. This is a unique ID for the data channel in the context of the detector of which it is a part.
3	detnum	int		The number of the detector that this channel belongs to. This is just a numeric reference to the detector's position in the focal plane.
4	imextension	int		The FITS image extension where the data from this channel resides.
5	ixmin	int	pixels	The X coordinate of the lower left corner of the data channel
6	ixmax	int	pixels	The X coordinate of the upper right corner of the data channel
7	iymin	int	pixels	The Y coordinate of the lower left corner of the data channel
8	iymax	int	pixels	The Y coordinate of the upper right corner of the data channel
9	dcrpix1	int	pixels	The X coordinate of the location within the data channel where the first pixel is read out.
10	dcrpix2	int	pixels	The Y coordinate of the location with

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	46 of 124

			the data channel where the first pixel is
			Teau out.
11	dcd1_1	int	Can take the values $(-1,0,1)$. Gives the
			partial derivative of the fast readout axis
			with respect to the X axis.
12	dcd1_2	int	Can take the values $(-1,0,1)$. Gives the
			partial derivative of the fast readout axis
			with respect to the Y axis.
13	dcd2_1	int	Can take the values (-1,0,1). Gives the
			partial derivative of the slow readout
			axis with respect to the X axis.
14	dcd2_2	int	Can take the values (-1,0,1). Gives the
			partial derivative of the slow readout
			axis to the Y axis.

5.3 Bad Pixel Mask

As we mentioned in section 2.12 on confidence maps, it is essential for many of the operations of the pipeline to know exactly which pixels in each image are always likely to be bad. This is done initially using a bad pixel mask. This will take the form of a FITS container file with an image extension of type byte for each detector. The values in the data array will be set to one for bad pixels and zero for good ones. The value of PRO CATG will be BPM.

5.4 Linearity Channel Table

As each data channel has its own electronics each channel will potentially require its own linearity curve. Using the timing and location information from the channel table (below) and the algorithm described in section 2.2.2 will lead to a set of coefficients, which will be combined with the channel table to form a 'linearity channel table'. This will again take the form of a FITS binary table, which will include all of the columns of the channel table as described in section 5.1 plus the following:

Column	Name	Туре	Units	Description
15	norder	int		The polynomial order used.
16	coeff_1	double		The first order coefficient (because of the formalism described in section 2.2.2 no zeroth order coefficient will exist and this coefficient will always be 1.0).
17	coeff_2	double		The second order coefficient
15+n	coeff_n	double		The nth order coefficient, where $n = norder$

The value of PRO CATG will be LCHANTAB.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	47 of 124

5.5 Crosstalk Matrix

Detector crosstalk is described in section 2.8. In order to correct for this effect we need a factor that defines the effect of one channel on a second one, i.e. a crosstalk matrix. This will be generated on an occasional basis and will be stored in the form of a FITS binary table, with a PRO CATG keyword value of XTALK and with the following columns:

Column	Name	Туре	Units	Description
1	source	int		The channel index of the crosstalk
				source
2	victim	int		The channel index of the victim of the crosstalk
3	coef	float		The scaling factor required to remove the source crosstalk from the victim.

The information in this table will be used by the crosstalk correction routine in conjunction with the channel table (5.1).

5.6 Illumination Correction Table

The effect of large scale background variation in the flat field images (usually due to scattered light) are described in section 2.15. An illumination correction table is generated by dividing the image plane into a number of boxes, using the systematic photometric zeropoint changes across the image to define the correction for each box. This is used to correct the instrumental magnitudes of subsequent observations for positional biases. This will be stored in the form of a series of binary FITS tables (one per detector) in a single MEF container, with the value of PRO CATG equal to ILLCORTAB and with the following columns:

Column	Name	Туре	Units	Description
1	xmin	int	pixels	The X position of lower left corner of the box
2	xmax	int	pixels	The X position of upper right corner of the box
3	ymin	int	pixels	The Y position of lower left corner of the box
4	ymax	int	pixels	The Y position of upper right corner of the box
5	illcor	float	mag	The illumination correction for the box

5.7 Difference Image Statistics Table

For recipes that monitor detector performance in particular, it is often worthwhile to keep statistical information on difference images. This is because frames are often compared to library frame either by forming a difference or a ratio and the statistics in cells or subsections across the output image can be a useful diagnostic to detector

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	48 of 124

performance. A difference image statistics table will be a FITS table with the PRO CATG keyword being DIFFIMSTATS and consisting of the following columns:

Column	Name	Туре	Units	Description
1	xmin	int	pixels	The X position of lower left corner of the cell
2	xmax	int	pixels	The X position of upper right corner of the cell
3	ymin	int	pixels	The Y position of lower left corner of the cell
4	ymax	int	pixels	The Y position of upper right corner of the cell
5	chan	int		The data channel to which this cell belongs. This is only useful if the whole cell fits into a data channel.
5	mean	float	adu	The mean value in the cell
6	median	float	adu	The median value in the cell
7	variance	float	adu	The variance of the values in the cell
8	mad	float	adu	The median absolute deviation from the median of the values in the cell.

5.8 Persistence Mask Table

Dealing with image persistence properly requires knowledge of observations that were done previous to the current one. In the on-line pipeline this can be approximately accomplished by processing the observations from a particular template with respect to the times that they were done. This sort of information then can be used in conjunction with the persistence decay time constant and the end time of the current exposure to decide which frames will have affected the current image and how to scale them to correct the problem. The columns for the persistence mask table are:

Column	Name	Туре	Units	Description
1	srcimage	char		The name of the source image
2	srctime	int	seconds	The end time of the source observation in seconds from 1 Jan 2000.

The PRO CATG keyword value will be set to PERSISTMASK.

5.9 Extracted Standards Table

During the course of the pipeline reductions it will be necessary to extract information from standard astrometric and photometric catalogues. The results of this extraction will be in an Extracted Standards Table and will contain the following columns:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	49 of 124

Column	Name	Туре	Units	Description
1	xpredict	float	pixels	The X position of the matching standard as predicted from the image WCS and the object's equatorial coordinates.
2	ypredict	float	pixels	The Y position of the matching standard as predicted from the image WCS and the object's equatorial coordinates.
3	ra	float	degrees	The standard's RA
4	dec	float	degrees	The standard's Dec
5 – n	mags	float	mags	Any photometric information that might exist in the standard star catalogue

The PRO CATG keyword value will be set to STDTAB.

5.10 Matched Standards Table

When doing astrometric and/or photometric reduction it is necessary to match astronomical objects that appear on an image with objects from a standard catalogue. The output from such a matching algorithm is called a Matched Standards Table and will contain the following columns:

Column	Name	Туре	Units	Description
1	xobj	float	pixels	The X position of the object on the image
2	yobj	float	pixels	The Y position of the object on the image.
3	xpredict	float	pixels	The X position of the matching standard as predicted from the image WCS and the object's equatorial coordinates.
4	ypredict	float	pixels	The Y position of the matching standard as predicted from the image WCS and the object's equatorial coordinates.
5	ra	float	degrees	The standard's RA
6	dec	float	degrees	The standard's Dec
7 – n	mags	float	mags	Any photometric information that might exist in the standard star catalogue

The PRO CATG keyword value will be set to MSTDTAB.

5.11 Object Catalogues

The derived object catalogues are stored in multi-extension FITS files as binary tables, one for each image extension. Each detected object has an attached set of descriptors, forming the columns of the binary table, and summarising derived position, shape and intensity information (see section 2.13 for more details).

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	50 of 124

The following columns are present:

column	name	description
1	No.	running number for ease of reference, in strict order
		of image detections
2	Isophotal_flux	standard definition of summed flux within detection
		isophote.
3	Total_flux	a total flux derived from a curve-of-grown technique and
		elliptical apertures
4	Core_flux	flux within a specified radius aperture, typically set such
		that $R_{aperture} = \langle FHWM \rangle$ where the quantity in angle
		brackets is the mean FWHM of all stellar images.
5	X_Coordinate	x,y coordinates in pixels with $(1,1)$ defined to be the
6	Y_Coordinate	centre of the first active pixel in the array. See 2.13.2.
7	Gaussian_sigma	Second moment parameters. See 2.13.2
8	Ellipticity	
9	Position_angle	
10	Peak_height	Peak intensity in ADU relative to local value of sky
11	Areal_1_profile	The number of pixels above a series of threshold levels,
12	Areal_2_profile	relative to local sky. The levels are set at T, 2T, 4T, 8T,
13	Areal_3_profile	16T, 32T, 64T and 128T where T is the analysis threshold
14	Areal_4_profile	
15	Areal_5_profile	
16	Areal_6_profile	
17	Areal_7_profile	
18	Areal_8_profile	
18	Core_1_flux	A series of different radii aperture measures similar to
19	Core_2_flux	column 4. Together with the peak height (column 10)
21	Core_3_flux	these give a simple curve-of-growth analysis from peak
22	Core_4_flux	pixel, $0.5R_{core}$, R_{core} , $\sqrt{2}R_{core}$, $2R_{core}$, $2\sqrt{2}R_{core}$,
23	RA	RA and Dec of each object in degrees. These are added
24	Dec	during WCS refinement
25	Classification	simple flag indicating most probably classification for
		object:
		-2: Object is compact (maybe stellar)
		-1: Object is stellar
		0: Object is noise
		1: Object is non-stellar

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	51 of 124

26		
26	Statistic	an equivalent $N(0,1)$ measure of how stellar-like an
		image is. It is used in deriving the classification (25) in a
		"necessary but not sufficient" sense. This statistic is
		computed from a discrete curve-of-growth analysis from
		the peak and aperture fluxes and also factors in ellipticity
		information. The stellar locus is used to define the
		"mean" and "sigma" as a function of magnitude such that
		the "statistic" can be normalised to an approximate
		N(0,1) distribution.
27-32	blank	

The PRO CATG keyword value will be set to OBJCAT.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	52 of 124

6 DRL Functions

In what follows we describe the low level functions that will be driven by the VIRCAM pipeline. The parameter lists included are based on the current level of functionality available with CPL version 2.0. Future versions of CPL may include high level structures and functions which will cause us to alter the way that information is passed to these routines when they are finally written. The reader must therefore not assume that the API for the DRL functions will be exactly as described here.

A feature of the DRL functions is an inherited status parameter. This is always the last in the parameter list and it is also the return value from each function. Each function will test the status value as its first action and return immediately if the status is bad. This is done so that the error status does not need to be tested after every call. The error messages will be passed through the CPL error structure and hence information on the origin and cause of any error will not be lost by using inherited status.

In this chapter we have simplified the descriptions of the functions by omitting both very obvious and repetitive features. A list of these shortcuts is included below.

- We have not enumerated very obvious keywords in the input or output header lists. These include things like the data array size, data type and data dimensionality.
- Each image required as input or output by the function will be listed in bold under sub-subsections 3 and 5. In parenthesis afterwards will be the data type. If any FITS keywords are required in the input files or are written to the output files, then these will be included in a table after the file description.
- An int * parameter called 'status' will be included in the input and output parameter lists for each function. This is because the status is inherited as mentioned above. It is also the one returned value in all of these functions and is returned as an integer.
- Inherited bad status will cause each function to return immediately without updating the CPL error message.
- A fatal error condition in a function will cause an appropriate CPL error message to be set and will cause the function to return to the calling routine immediately where the pipeline can take the necessary steps to terminate gracefully. We do not include segmentation violations, arithmetic exceptions and the like in the definition of a fatal error.
- Very obvious error conditions such as corrupted input files, running out of disc space, etc have been omitted for brevity.

6.1 vircam_crosstalk

6.1.1 General

Name:

vircam_crosstalk

Purpose:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	53 of 124

Remove electronic crosstalk from an image

General Description

Electrical crosstalk is removed from each data channel in the input images by means of a crosstalk matrix (see section 5.5). The latter consists of factors by which the data from one channel affects another.

Mathematical Description:

See section 2.8 for a full mathematic description of crosstalk removal.

6.1.2 Function Parameters

None

6.1.3 Input Images and Required FITS Header Information.

infiles (float)

The input science container-file to be corrected; this must contain a full list of all the source and victim images.

6.1.4 Input Tables

xtable

The crosstalk matrix (see 5.5)

chantab

The channel table (see 5.2)

6.1.5 Output Images

outfile (float)

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

keywordtypedescriptionDRS XTCORcharThe name of crosstalk matrix table used

6.1.6 Output Tables

None

6.1.7 Other Output

None

6.1.8 QC1 Outputs

None

6.1.9 Quality Assessment

Crosstalk artefacts are removed to with the expected sky noise

6.1.10 Error Conditions

- There are no fatal error conditions.
- There are no non-fatal error conditions

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	54 of 124

6.2 vircam_darkcor

6.2.1 General

Name:

vircam_darkcor

Purpose:

Remove reset anomaly and dark current using a library mean dark frame of matching exposure/integration time if available.

General Description

The data array of the input dark frame is multiplied by a factor such that it matches the scale of the reset anomaly in the target object frame. This is done by comparing regions of each quadrant where the reset anomaly is worst. Instrumental commissioning will determine which regions of the quadrants should be used in the scaling calculation. The scaled dark frame is then subtracted from the target frame.

Mathematical Description:

 $I_i^{out} = I_i^{in} - kD_i^{-1}$

where I is the input data, D is the mean dark frame data and k is the scaling factor.

6.2.2 Function Parameters

float darkscl

An input scaling factor; a value that is less than or equal to zero, means that the scaling factor will be worked out automatically by this function. A positive value will be used as is.

6.2.3 Input Images and Required FITS Header Information

infile (float)

The input science image to be corrected.

darksrc (float)

The input mean dark image.

6.2.4 Input Tables

None

6.2.5 Output Images

outfile (float)

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

keyword	type	description
DRS DARKCOR	char	The name of the flat field image specified in darksrc
DRS DARKSCL	float	The scale factor used in the subtraction

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	55 of 124

6.2.6 Output Tables

None

6.2.7 Other Output

int * status

Output status from function; a non-zero value indicates a failure at some level.

6.2.8 QC1 Outputs

None

6.2.9 Quality Assessment

Reset anomaly ramp removed

6.2.10 Error Conditions

- The following conditions will cause fatal errors
 Mismatched data array dimensionality between the input images
- There are no non-fatal error conditions

6.3 vircam_defringe

6.3.1 General

Name:

vircam_defringe

Purpose:

Remove fringe patterns from an image using a mean fringe frame and a scaling algorithm

General Description

Large scale variations are removed from the input frame by dividing the image into squares over which a background median can be determined and then constructing an interpolated background correction. The fringe image is scaled by a value and subtracted from the input image. Statistics of the image show whether the scale factor used was too high or too low. The scale factor is adjusted and the fit is attempted again. This is repeated to convergence. Once convergence is achieved, then the fringes are removed with the correct scale factor. The background map variation is then added back in.

Mathematical Description:

 $I_i = I_i - k * Fr_i$ where *I* is the input image data, *k* is the fringe scaling factor and *Fr* is the fringe data. For a full description of how the scale factor and the fringe data are computed see section 2.6.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	56 of 124

6.3.2 Function Parameters

int opmode

The operational mode of the algorithm; a value of 1 means that the scale factor will be determined automatically, a value of 2 means that the scale factor will be taken from the parameter **scfac.**

float scfac

If the value of **opmode** is such that we want to set the fringe scale manually, then this should have the value of the desired scale. Otherwise this parameter is ignored.

6.3.3 Input Images and Required FITS Header Information

infile (float)

The input science image to be corrected.

keyword	type	Description
EXPTIME	int	The exposure time of the input data

frfile (float)

The input mean fringe image.

keyword	type	description
EXPTIME	int	The exposure time of the fringe data

6.3.4 Input Tables

None.

6.3.5 Output Images

outfile (float)

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

keyword	type	description
DRS FRINGEn	char	The name of the fringe file used in the nth defringing pass
DRS FRNGSCn	float	The scale factor for the nth defringing pass.

6.3.6 Output Tables

None

6.3.7 Other Output

None.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	57 of 124

6.3.8 QC1 Outputs

FRINGE_RATIO

6.3.9 Quality Assessment

QC1 parameter FRINGE_RATIO shows significant improvement in sky noise

6.3.10 Error Conditions

- The following conditions will cause fatal errors
 - Zero or negative exposure times
 - Mismatched data array dimensionality
- The following conditions will cause non-fatal errors
 - Negative fringe-scale factor (e.g. as occasionally produced in conditions following a solar flare).

6.4 vircam_flatcor

6.4.1 General

Name:

vircam_flatcor

Purpose:

Remove large and small scale gain variations by dividing science frames by a mean flat field frame.

General Description

The data array of the input image is divided by that from a mean flat field image. The mean flat field should have been normalised in the manner described in section 2.3. This ensures that during this reduction step we perform both for the flat field correction and the detector gain correction.

Mathematical Description:

 $I_i^{out} = I_i^{in} \, / \, F_i$

where I is the input data and F is the mean flat field data.

6.4.2 Function Parameters

None

6.4.3 Input Images and Required FITS Header Information

infile (float)

The input science image to be corrected.

flatsrc (float)

The input mean flat field image.

6.4.4 Input Tables

None

6.4.5 Output Images

outfile (float)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	58 of 124

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

keyword	type	description
DRS FLATCOR	char	The name of the flat field image specified in flatsrc

6.4.6 Output Tables

None

6.4.7 Other Output

None

6.4.8 QC1 Outputs

None

6.4.9 Quality Assessment

Robust estimates of the background of each detector image agree c.f. to expected sky noise.

6.4.10 Error Conditions

- The following conditions will cause fatal errors
 - Mismatched data array dimensionality between the input images
 - A value of zero in the flat field data array
- There are no non-fatal error conditions

6.5 vircam_genlincur

6.5.1 General

Name:

vircam_genlincur

Purpose:

Generate linearity coefficients given a list of dome flat field exposures.

General Description:

A series of exposures of a stable dome light source with a range of exposure times should be given. From the known readout, reset and exposure times a timing map is constructed for each pixel according to the algorithm outlined in section 2.2.2. The results are written to a linearity channel table.

Mathematical Description:

This function implements the mathematical description in section 2.2.2

6.5.2 Function Parameters

int norder

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	59 of 124

The order of the polynomial to use in the expansion; note that because the zeroth term is defined to be zero, then the number of coefficients this routine will derive is the same as the polynomial order.

float readtime

The time it takes to read out each data channel in seconds.

float **resettime**

Time it takes to reset a data channel in seconds.

6.5.3 Input Images and Required FITS Header Information

infiles (float)

The input science images to be examined

keyword	type	Description
EXPTIME	int	The exposure time of the input data in seconds

6.5.4 Input Tables

chantab

The channel table as described in section 5.2.

6.5.5 Output Images

None

6.5.6 Output Tables

lchantab

The linearity channel table as described in section 5.4.

6.5.7 Other Output

None

6.5.8 QC1 Outputs

LINEARITY LINFITQUAL

6.5.9 Quality Assessment

The value of LINEARITY is reasonable for all detectors. The value of LINFITQUAL shows a fractional error of less than a 2%.

6.5.10 Error Conditions

- The following conditions will cause fatal errors
 - Negative or zero exposure time.
 - Mismatched dimensionality of data arrays.
- There are no non-fatal error conditions

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	60 of 124

6.6 vircam_getstds

6.6.1 General

Name:

vircam_getstds

Purpose:

Given an input image, extract a list of standard stars from a catalogue that should appear on that image. It is expected that the 2MASS catalogue (about 43Gbytes in FITS-table format) will be available through a CPL interface.

General Description:

The header of in input image is parsed to locate and read the standard WCS FITS header keywords. The WCS is used to define the coverage of the image in equatorial coordinates. The coverage is used to select objects from a requested standard star catalogue. Once the stars have been selected the information about them is written to an extracted standards table (5.9) along with their expected x,y positions based on the input WCS.

Mathematical Description:

N/A

6.6.2 Function Parameters

float **border**

A multiplicative factor defining the amount by which the coordinate coverage range should be widened. This can be used to add some padding around the edges to cover cases where the input WCS is poorly known.

char * catsrc

A specification of the source of the standard catalogue; this can be either a locally held file or a URL for a VizieR catalogue.

6.6.3 Input Images and Required FITS Header Information

infile (any)

The input image; the header of the image is all that will be required.

keyword	type	description
CRPIX1	double	All of the standard FITS WCS keywords that are relevant for the
CRPIX2	double	projection model to be used with VIRCAM (nominally ZPN).
CTYPE1	char	See [RD 8] for more specific information
CTYPE2	char	
CRVAL1	double	
CRVAL2	double	
CD1_1	double	
CD1_2	double	
CD2_1	double	
CD2_2	double	
PV2_1	double	
PV2_3	double	

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	61 of 124

6.6.4 Input Tables

None

6.6.5 Output Images

None

6.6.6 Output Tables

outtab

The table of extracted objects in the format described in section 5.9

6.6.7 Other Output

None

6.6.8 QC1 Outputs

None

6.6.9 Quality Assessment

N/A

6.6.10 Error Conditions

- The following conditions will cause fatal errors
 - o Non-physical coordinate coverage
 - Inability to contact the catalogue source in the event that it has been done with an internet connection.
- The following conditions will lead to non-fatal errors
 - No objects found in the catalogue

6.7 vircam_illum

6.7.1 General

Name:

vircam_illum

Purpose:

Work out the spatial corrections in the photometric zero point.

General Description:

This function takes a table of photometric standards and a table of objects extracted from an image. The objects in both of the input tables are matched up. The pixel space of the original image is divided up into cells of **nbsize** pixels on a side. The mean zero point for each cell is calculated. Next the ensemble-mean zero point is calculated for all the cells. The illumination correction is then defined for each cell as the residual zero point from that mean. The sense of the illumination correction for a cell is such that it must be subtracted from the mean frame zero point for objects in that cell.

Mathematical Description:

This function implements the mathematical description in section 2.15

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	62 of 124

6.7.2 Function Parameters

int **nbsize**

The size of the cells in pixels to use when dividing up the input data.

6.7.3 Input Images and Required FITS Header Information

None

6.7.4 Input Tables

stdtab

The photometric standards table as defined in 5.9

objtab

The table of objects extracted from an image of a standard star field. This is described in section 5.11

6.7.5 Output Images

None

6.7.6 Output Tables

illcortab

The illumination correction table as defined in section 5.6.

6.7.7 Other Output

None

6.7.8 QC1 Outputs

ILLUMCOR_RMS

6.7.9 Quality Assessment

Applying the correction table to the input file should result in a magnitude zero point with an RMS consistent with the mean RMS of the source photometric catalogue. This can be seen with the keyword DRS MAGZERR which is generated by **vircam_photcal** (6.17).

6.7.10 Error Conditions

- The following conditions will cause fatal errors
 - No matching objects
- There are no non-fatal error conditions

6.8 vircam_imcombine

6.8.1 General

Name:

vircam_imcombine

Purpose:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	63 of 124

Combine a list of images into an output image. Allow for x,y shifting, intensity biasing, intensity scaling, image weighting and bad pixel rejection.

General Description:

A list of images is combined to form an output image. The output image can be either a mean of the input pixels or a median. The images can have the following done to them before combination:

- the input data values for a given output pixel can be scaled by a preset amount for each input image
- the input data values for a given output pixel can be biased by a preset amount for each input image
- outliers can be masked and rejected
- known bad pixels can be masked and rejected
- individual pixels can be weighted by confidence
- known Cartesian offsets can be applied to the input images

Mathematical Description:

None

6.8.2 Function Parameters

int calctype

A flag to determine whether the output should be a mean or a median of the input frames

int useoffsets

If set, then the images will be shifted in pixel space by amounts defined in the image headers

int **usezeros**

If set, then the images will be biased by an amount specified in the image headers

int usescales

If set, then the images will be multiplied by a factor specified in the image headers

int wtflag

A flag to determine how to weight the pixels; the options are:

- Ignore pixel weights altogether
- Weight bad pixels to 0 and all others to 1.
- Use weights implied by the input confidence maps

int rejalgo

A flag to specify the rejection algorithm used to flag outliers. This will include standard Poisson rejection based on the read-noise and gain as well as other popular algorithms.

float **lsigma**

The lower threshold for clipping outliers in units of sigma.

float hsigma

The upper threshold for clipping outliers in units of sigma.

6.8.3 Input Images and Required FITS Header Information

inlist (float)

The list of input files to be combined.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	64 of 124

keyword	type	description
DRS	float	The number of pixels in X by which to shift the current input
VIRXOFF		image relative to the output grid. Ignored unless useoffsets has
		been set.
DRS	float	The number of pixels in Y by which to shift the current input
VIRYOFF		image relative to the output grid. Ignored unless useoffsets has
		been set

6.8.4 Input Tables

None

6.8.5 Output Images

outfile (float)

The output file; depending upon whether **useoffsets** has been set this may or may not have the same physical dimensions as the input list.

keyword	type	description
DRS	char	A set of FITS keywords that list the files that were combined to
VXXXX		form this output file. This establishes the provenance of the output file.

outconf (short int)

The output confidence map.

6.8.6 Output Tables

None

6.8.7 Other Output

None

6.8.8 QC1 Outputs

None

6.8.9 Quality Assessment

N/A

6.8.10 Error Conditions

- The following conditions will cause fatal errors
 - **useoffsets** set but no offset information exists in the header
- There are no non-fatal error conditions

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	65 of 124

6.9 vircam_imcore

6.9.1 General

Name:

vircam_imcore

Purpose:

Generate a catalogue of objects on an image.

General Description:

This function is the main object extraction routine. It generates object catalogues for the purposes of astrometric and photometric calibration, generating catalogues of the form described in section 5.11.

Mathematical Description:

This function implements the mathematical description in section 2.13

6.9.2 Function Parameters

int **ipix**

The minimum size of an object in pixels in order for that object not to be considered spurious.

float **thresh**

The detection threshold measured in units of the mean background noise int **icrowd**

If set, then the function will attempt to de-blend merged objects

float **rcore**

The core radius in pixels for the default profile fit.

int **nbsize**

The size in pixels of the grid squares used for background estimation.

6.9.3 Input Images and Required FITS Header Information

infile (float)

The input image from which to extract the objects

keyword	type	description
EXPTIME	int	The exposure time of the input data in seconds

6.9.4 Input Tables

None

6.9.5 Output Images

None

6.9.6 Output Tables

objtab

The table of extracted objects as described in section 5.11.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	66 of 124

6.9.7 Other Output

The following keywords are written back to the input file (infile)

keyword	type	description
DRS SKYLEVEL	float	The mean sky level in the image
DRS SKYNOISE	float	The mean sky noise in the image

6.9.8 QC1 Outputs

SATURATION MEAN_SKY SKY_NOISE SKY_RESET_ANOMALY NOISE_OBJ IMAGE_SIZE APPERTURE_CORR ELLIPTICITY

6.9.9 Quality Assessment

N/A

6.9.10 Error Conditions

- The following conditions will cause fatal errors
 - o Negative threshold value
 - Zero or negative sky noise estimate
- The following conditions will lead to non-fatal errors
 - No objects found

6.10 vircam_imstack

6.10.1 General

Name:

vircam_imstack

Purpose:

Stack a list of images into an output by mapping the input WCSs onto an output grid.

General Description:

A list of images is combined to form an output image. The full range of equatorial coordinates in the input file list is used to define an output grid. Each of the input pixels is mapped onto an appropriate pixel on the output grid. The resulting stacks can be either averaged or medianed to an output value. The images can have the following done to them before combination:

• the input data values for a given output pixel can be scaled by a preset amount for each input image

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	67 of 124

- the input data values for a given output pixel can be biased by a preset amount for each input image
- outliers can be masked and rejected
- known bad pixels can be masked and rejected
- individual pixels can be weighted by confidence

Mathematical Description:

None

6.10.2 Function Parameters

int calctype

A flag to determine whether the output should be a mean or a median of the input frames

int **usezeros**

If set, then the images will be biased by an amount specified in the image headers

int usescales

If set, then the images will be multiplied by a factor specified in the image headers

int wtflag

A flag to determine how to weight the pixels; the options are:

- Ignore pixel weights altogether
- Weight bad pixels to 0 and all others to 1.
- Use weights implied by the input confidence maps

int rejalgo

A flag to specify the rejection algorithm used to flag outliers. This will include standard Poisson rejection based on the read noise and gain as well as other popular algorithms.

float **lsigma**

The lower threshold for clipping outliers in units of sigma.

float hsigma

The upper threshold for clipping outliers in units of sigma.

6.10.3 Input Images and Required FITS Header Information

inlist (float)

The list of input files to be stacked.

keyword	type	description
CRPIX1	double	All of the standard FITS WCS keywords that are relevant for the
CRPIX2	double	projection model to be used with VIRCAM (nominally ZPN).
CTYPE1	char	See [RD 8] for more specific information.
CTYPE2	char	
CRVAL1	double	
CRVAL2	double	
CD1_1	double	
CD1_2	double	
CD2_1	double	

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	68 of 124

CD2_2	double
PV2_1	double
PV2_3	double

6.10.4 Input Tables

None

6.10.5 Output Images

outfile (float)

The output file.

keyword	type	description
DRS	char	A set of FITS keywords that list the files that were combined to
VXXXX		form this output file. This establishes the provenance of the
		output file.

outconf (short int)

The output confidence map.

6.10.6 Output Tables

None

6.10.7 Other Output

None

6.10.8 QC1 Outputs

None

6.10.9 Quality Assessment

N/A

6.10.10 Error Conditions

- The following conditions will cause a fatal error
 - No or incomplete WCS defined in an input file header
- There are no non-fatal error conditions.

6.11 vircam_interleave

6.11.1 General

Name:

vircam_interleave

Purpose:

Interleave the pixels from a microstepped sequence to form an output frame and confidence map.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	69 of 124

General Description:

The fractional microstep and offsets defined by the WCS in the input file headers are used to define the size and scale of the output grid. The input data is then mapped directly onto the output grid using known offsets. The result is a frame where the input pixels have been interwoven to form a finer grid. The images can have the following done to them before combination:

- the input data values for a given output pixel can be scaled by a preset amount for each input image
- the input data values for a given output pixel can be biased by a preset amount for each input image

No pixel rejection is possible

Mathematical Description:

None

Quality Assessment:

N/A

6.11.2 Function Parameters

int **usezeros**

If set, then the images will be biased by an amount specified in the image headers

int usescales

If set, then the images will be multiplied by a factor specified in the image headers.

6.11.3 Input Images and Required FITS Header Information

inlist (float)

The list of input files to be combined.

keyword	type	description
CRPIX1	double	All of the standard FITS WCS keywords that are relevant for the
CRPIX2	double	projection model to be used with VIRCAM (nominally ZPN).
CTYPE1	char	See [RD 8] for more specific information.
CTYPE2	char	
CRVAL1	double	
CRVAL2	double	
CD1_1	double	
CD1_2	double	
CD2_1	double	
CD2_2	double	
PV2_1	double	
PV2_3	double	

6.11.4 Input Tables

None

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
		Date:	2005-08-12
System		Page:	70 of 124

6.11.5 Output Images

outfile (float)

The output file.

keyword	type	description
DRS	char	A set of FITS keywords that list the files that were combined to
VXXXX		form this output file. This establishes the provenance of the output file.

outconf (short int)

The output confidence map.

6.11.6 Output Tables

None

6.11.7 Other Output

None

6.11.8 QC1 Outputs

None

6.11.9 Quality Assessment

N/A

6.11.10 Error Conditions

- The following conditions will lead to a fatal error.
 - No or incomplete WCS in an input file header
- The following conditions will lead to a non-fatal error
 The non-integral part of the offset substantially different from 0.5 pixel

6.12 vircam_lincor

6.12.1 General

Name:

vircam_lincor

Purpose:

Use linearity coefficients and timing information to put input data onto a linear scale.

General Description

The linearity coefficients for each data channel are combined with readout timing information in the manner described in section 2.2.1 to create a linearized data array for the input file.

Mathematical Description:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	71 of 124

This function implements the mathematical description given in section 2.2.1. See that section for a full description.

6.12.2 Function Parameters

float **readtime**

The time it takes to read out each data channel in seconds.

float **resettime**

Time it takes to reset a data channel in seconds.

6.12.3 Input Images and Required FITS Header Information

infile (float)

The input science image to be corrected.

keyword type		description		
EXPTIME	int	The exposure time of the input data		

6.12.4 Input Tables

lchantab

The linearity channel table for the detector represented in the input image (**infile**). See section 5.4 for a full description of the table and its contents.

6.12.5 Output Images

outfile (float)

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

keyword	type	description
DRS LINCOR	char	The name of the linearity channel table specified in lchantab

6.12.6 Output Tables

None

6.12.7 Other Output

None

6.12.8 QC1 Outputs

None

6.12.9 Quality Assessment

N/A

6.12.10 Error Conditions

- The following conditions will cause fatal errors
 - Negative exposure, readout or reset time.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
		Date:	2005-08-12
System		Page:	72 of 124

• There are no non-fatal error conditions

6.13 vircam_matchstds

6.13.1 General

Name:

vircam_matchstds

Purpose:

Match a list of standard stars (from vircam_getstds) to the (x,y) positions of objects on an image.

General Description:

This routine matches the objects found on an image with a list of objects that have been extracted from a standard catalogue. The (x,y) coordinates in both lists are compared and Cartesian offsets are found which cause the maximum number of objects to match. Output will be to a matched standards table (5.10).

Mathematical Description:

N/A

6.13.2 Function Parameters

float srad

A search radius in pixels; this is used as a limit to define if a match is valid.

6.13.3 Input Images and Required FITS Header Information

None

6.13.4 Input Tables

objtab

The table of extracted objects from an image; this should be in the format of an object catalogue described in section 5.11

stdstab

The table of stars taken from the standard catalogue; this should be in the format of an extracted standards table (5.9)

6.13.5 Output Images

None

6.13.6 Output Tables

outtab

The table of objects that matched between the two input tables; this will be in the format of a matched standards table (5.10)

6.13.7 Other Output

int * nmatch

The number of stars that matched between the two input tables
VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	73 of 124

6.13.8 QC1 Outputs

None.

6.13.9 Quality Assessment

N/A

6.13.10 Error Conditions

- There are no fatal error conditions.
 - The following conditions will lead to non-fatal errors
 - No objects in one or both catalogues
 - No objects match between the catalogues

6.14 vircam_matchxy

6.14.1 General

Name:

vircam_matchxy

Purpose:

Work out relative jitter offsets by cross-correlating the locations of objects on a set of frames.

General Description:

Two catalogues of objects derived from two images (a programme image and a template image) are given. A search algorithm is used to try and maximise the number of objects that match between the two lists, by varying the Cartesian offsets. No axis flipping or rotation is allowed. The output is the x,y offsets. These can be applied to a whole group of files by the calling routine in order to define the relative offsets for a complete jitter sequence. The offsets are defined in the sense:

 $\Delta X = X_{\textit{template}} - X_{\textit{programme}}$

Mathematical Description:

None

6.14.2 Function Parameters

float srad

The search radius in pixels used to define a threshold radius for matching.

6.14.3 Input Images and Required FITS Header Information

None

6.14.4 Input Tables

progtab

The table of objects appearing on the 'programme' frame; this should be in the format of an object catalogue (see section 5.11).

temptab

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	74 of 124

The table of objects appearing on the 'template' frame; this should be in the format of an object catalogue (see section 5.11).

6.14.5 Output Images

None

6.14.6 Output Tables

None

6.14.7 Other Output

float * **xoffset**

The Cartesian offset in X

float * yoffset

The Cartesian offset in Y.

int * **nmatch**

The number of objects that matched to form the offset estimate.

6.14.8 QC1 Outputs

None

6.14.9 Quality Assessment

N/A

6.14.10 Error Conditions

- There are no fatal error conditions.
- The following conditions will lead to non-fatal errors
 - No objects matched. Offsets of zero will be returned.

6.15 vircam_mkconf

6.15.1 General

Name:

vircam_mkconf

Purpose:

Make an initial confidence map from two flat field images

General Description:

A mean flat field image and a bad pixel mask are given. The good pixels are given a confidence value as described below and the bad ones are assigned a value of zero. A four quadrant windowpane of bad pixels can be added (IR arrays sometimes have these).

Mathematical Description:

'Good' pixels will be given a confidence of:

 $C_i = 100 Q_i / \langle Q \rangle$

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	75 of 124

where Q_i is the pixel's value in the quotient map, and $\langle Q \rangle$ is the mean value in the quotient map.

Quality Assessment:

N/A

6.15.2 Function Parameters

int windowpane

If set, then a simple cross denoting the edges of the quadrants will be marked as a list of bad pixels.

6.15.3 Input Images and Required FITS Header Information

inflat (float)

The input flat field **bpm** (byte) The bad pixel mask

6.15.4 Input Tables

None

6.15.5 Output Images

outconf (short int)

The output confidence map.

	1	*
keyword	type	description
DRS	char	The name of the mean flat field frame that was used to create
FLATIN		this confidence map
		1
DPS	ahar	The name of the bad nivel mask image that was used to create
DKS	unal	The name of the bad pixel mask image that was used to create
BPMIN		this confidence map
DRS BPMIN	char	The name of the bad pixel mask image that was used to create this confidence map

6.15.6 Output Tables

None

6.15.7 Other Output

None.

6.15.8 QC1 Outputs

None

6.15.9 Quality Assessment

N/A

6.15.10 Error Conditions

- There are no fatal error conditions.
- The following conditions will lead to non-fatal errors:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	76 of 124

• Missing library bad pixel mask.

6.16 vircam_persist

6.16.1 General

Name:

vircam_persist

Purpose:

Remove effects of image persistence

General Description:

Images can persist on an IR detector after it has been read and reset. This persistence can be characterised by an exponential decay time. To correct this, a list of all the images that have been taken before the current image should be passed into this routine, along with their respective observational end times (in seconds from some zero point). This is the persistence mask defined in section 5.8. Using this information, an appropriate decay model and the ending time of the current exposure, a persistence map is built up. This map is then subtracted from the input image.

Mathematical Description:

This function implements the mathematical description in section 2.7.

6.16.2 Function Parameters

float decay

The decay constant in seconds as described in section 2.7.

float **fract**

The fraction of the ambient intensity that persists right after reset (i.e. no decay time).

6.16.3 Input Images and Required FITS Header Information

infile (float)

The input science image to be corrected.

keyword	type	description
EXPTIME	int	The exposure time of the input data
DATE-OBS	char	The UTC date of the start of the exposure

6.16.4 Input Tables

ptable

The persistence mask. See section 5.8.

6.16.5 Output Images

outfile (float)

The output science image; if this is the same as the value for **infile** or is blank, then the output will overwrite the input.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	77 of 124

keyword	type	description
DRS PERMASK	char	The name of the persistence
		mask used

6.16.6 Output Tables

None

6.16.7 Other Output

None.

6.16.8 QC1 Outputs

None

6.16.9 Quality Assessment

Persistent images removed to with the image mean sky noise.

6.16.10 Error Conditions

- The following conditions will cause fatal errors
 - Negative or zero exposure time.
 - Mismatched dimensionality of data arrays.
- There are no non-fatal error conditions

6.17 vircam_photcal

6.17.1 General

Name:

vircam_photcal

Purpose:

Work out the photometric zero point for stars in an image

General Description:

The instrumental and standard magnitudes of objects on a frame are compared and a photometric zero point is calculated.

Mathematical Description:

This function implements the mathematical description in section 2.14

6.17.2 Function Parameters

None.

6.17.3 Input Images and Required FITS Header Information.

infile (any)

The input image; needed so that the header can be updated.

6.17.4 Input Tables

stdstab

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	78 of 124

A matched standards table (see 5.10) with the photometric standard stars that have matched the objects on the image

objtab

An object catalogue (see 5.11) generated from the input frame.

illcortab

An illumination correction table (see 5.6)

6.17.5 Output Images

None

6.17.6 Output Tables

None

6.17.7 Other Output

Both infile and objtab have the following added to their FITS headers:

keyword	type	description
DRS MAGZPT	float	The calculated photometric zero point for the image
DRS MAGZERR	float	The RMS of the photometric zero point for the image
DRS MAGNZPT	int	The number of stars used in the zero point calculation

6.17.8 QC1 Outputs

ZPT_2MASS ZPT_STDS LIMITING_MAG

6.17.9 Quality Assessment

DRS MAGZERR is within the expected internal consistency of the photometric source catalogue.

6.17.10 Error Conditions

- There are no fatal error conditions
- The following conditions will lead to non-fatal errors
 - No matching photometric standards

6.18 vircam_platesol

6.18.1 General

Name:

vircam_platesol

Purpose:

Work out a plate solution for an image given the RA, Dec,x,y values for objects on that image.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	79 of 124

General Description:

Cartesian and equatorial coordinates are fitted to standard plate solution models of either 4 or 6 constants (4-constant model being more robust but at the cost of assuming zero shear and no scale difference. The default therefore is 6). If so desired, the difference in the predicted x,y coordinates and the true x,y coordinates can be used to adjust the tangent point first to block correct for telescope pointing error. The median difference of the equatorial coordinates between that implied from the two sets of Cartesian coordinates is used to update the tangent point A full least-squares solution is performed and the results are written back to the given FITS WCS header structure.

Mathematical Description:

For a 6 constant model, fits are done with the input standards for the equations:

$\xi = ax + by + c$	(6-1)
$\eta = dx + ey + f$	(6-2)

to find values of a, b, c, e, d and f. For a 4-constant model the same equations are used, but with the constraint that a = e and b = d. See section 2.9 for information on how the expected projection geometry will be incorporated.

6.18.2 Function Parameters

int **nconst**

The number of plate constants to be used. This can be either 6 (default) or 4. int **adjust_tan**

If set, then the tangent point will be moved before the fit to take into account any Cartesian offset between the frame as defined by the current WCS, and the frame defined by the standards.

6.18.3 Input Images and Required FITS Header Information

infile (any)

The input file; only the header is used in this function.

keyword	type	description
CRPIX1	double	All of the standard FITS WCS keywords that are relevant for the
CRPIX2	double	projection model to be used with VIRCAM (nominally ZPN).
CTYPE1	char	See [RD 8] for more specific information. NB: These will all be
CTYPE2	char	modified by this function on output.
CRVAL1	double	
CRVAL2	double	
CD1_1	double	
CD1_2	double	
CD2_1	double	
CD2_2	double	
PV2_1	double	
PV2_3	double	

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	80 of 124

6.18.4 Input Tables

objinfo

The table of objects with Cartesian pixel coordinates and equatorial coordinates. This will be in the format of a matched standards table (5.10)

objtab

Full object catalogue extracted from **infile**. This is only needed so that the routine can update the coordinates for each object.

6.18.5 Output Images

infile (any)

The input file; the WCS structure in the header will be modified to include the new parameters found in this function.

keyword	type	description
DRS	float	The RMS of the WCS fit.
STDCRMS		
DRS	int	The number of stars used in the WCS fit
NUMBRMS		
DRS	float	The equatorial coordinates of the central pixel of the image
WCSRAOFF		is calculated both before and after the plate solution is
		found. This is the difference in the RA (in arcseconds)
DRS	float	The equatorial coordinates of the central pixel of the image
WCSDECOFF		is calculated both before and after the plate solution is
		found. This is the difference in the DEC (in arcseconds)

6.18.6 Output Tables

None

6.18.7 Other Output

None

6.18.8 QC1 Outputs

WCS_DCRVAL1 WCS_DCRVAL2 WCS_DTHETA WCS_SCALE WCS_SHEAR (6-constant model) WCS_RMS

6.18.9 Quality Assessment

DRS STDCRMS is within the expected internal consistency of the input astrometric data convolved with a centring error.

6.18.10 Error Conditions

• There are no fatal error conditions.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	81 of 124

- The following conditions will lead to non-fatal errors
 - No objects in one or both catalogues
 - No objects match between the catalogues

6.19 vircam_sky_flat_combine

6.19.1 General

Name:

vircam_sky_flat_combine

Purpose:

Combine sky or object observations to create a mean sky flat and confidence map.

General Description:

- Process the images to linearize and remove dark current
- Combine the images with biasing and rejection.
- Normalise each detector's flat-field by the ensemble median level over all the detectors' flat-fields. The normalised level in each image is the detector gain correction.
- Create the confidence map from the mean flat field and the master bad pixel mask

Mathematical Description:

None

6.19.2 Function Parameters

float low

The lower limit to define an under exposed flat field image

float high

The upper limit to define a saturated flat field image

6.19.3 Input Images and Required FITS header information

Input Data:

- A series of exposures of a sparse patch of sky. These can either be target images of offset sky images.
- Library mean dark frame for the given exposure and integration time.
- Linearity channel table
- Library bad pixel mask

Parameters:

6.19.4 Input Tables

None

6.19.5 Output Images

Outputs:

- Mean sky flat field for the given passband (MASTERSKYFLAT)
- Confidence map for the given passband (CONFMAP)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	82 of 124

6.19.6 Output Tables

None

6.19.7 Other Output

None

6.19.8 QC1 Outputs

GAIN_CORRECTION FLATVAR

6.19.9 Quality Assessment

N/A

6.19.10 Error Conditions

Fatal Error Conditions:

- Missing library master images
- Missing library master tables
- All flat images either under or over exposed

Non-fatal Error Conditions:

• Missing library bad pixel mask (No pixels flagged as bad)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	83 of 124

7 Data Reduction CPL Plugins

Each recipe has a direct correspondence to a CPL plugin; but the correspondence between raw data-types and recipes is not one-to-one because, in some cases, science data is used to produce calibration frames. Each plugin is documented below. Where a calibration product is created by the recipe, the value in parenthesis after the file specifies the value of the PRO CATG keyword in the output file header.

The plugins may receive error messages from the functions that they call. If these are considered by the function to be fatal, then the plugin will exit gracefully. If the errors are considered to be just a warning the plugin may choose to proceed with caution, to get the information it needs from another source or fail gracefully As in the previous section we do not include conditions such as segmentation violations and arithmetic exceptions in the list of fatal errors. Error conditions will also occur within the plugin, but outside of one of the VIRCAM functions. These will be documented here under the banner of *additional* error conditions. Very obvious fatal errors such as failure to specify any files to reduce or running out of disc space are not included in the list.

7.1 vircam_reset_combine

Name:

vircam_reset_combine

Purpose:

Combine a sequence of reset frames to form a mean frame. Compare to a library reset frame to provide information on the stability of the pedestal and reset structure

Type:

Detector calibration

Input Data:

- List of reset frames
- Library mean reset frame
- Channel table

Parameters:

int ncells

The number of cells into which we can divide each data channel

Algorithm:

- Combine the sequence of reset frames into a single mean with rejection.
- Subtract the library reset frame
- Calculate the global difference level and at the level of each data channel
- Split each data channel of the difference frame into cells and do a robust median estimate in each.

Outputs:

- New master reset frame (MASTERRESET)
- Difference image (DIFFIMG)
- Reset difference image statistics table (DIFFIMSTATS)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	84 of 124

QC1 Parameters: RESETVAR Vircam Functions Used: vircam_imcombine Additional Fatal Error Conditions:

None

Additional Non-fatal Error Conditions:

- Missing calibDB reset frame (No comparison with previous frame done)
- Missing channel table (No comparison with previous frame done)
- Library mean reset frame data array dimensionality mismatch with new mean reset frame. (No comparison with previous frame done)

7.2 vircam_dark_combine

Name:

vircam_dark_combine

Purpose:

Combine a series of dark frames taken with a particular integration and exposure time combination. Compare with a similarly observed master dark frame. Calculate variation in the reset anomaly structure and scale. Estimate dark counts in the new frame.

Type:

Detector calibration

Input Data:

- List of dark frames
- Library mean dark frame
- Library confidence mask
- Channel table

Parameters:

int ncells

The number of cells into which we can divide each data channel

Algorithm:

- Combine the sequence of dark frames with rejection.
- In conjunction with confidence map, assess the number of rejected pixels to give an indication of the rate of cosmic ray hits and their properties.
- Work out a robust median in a region that is unaffected by reset anomaly.
- Subtract this frame from a calibDB dark frame.
- Calculate global difference level and the level in each data channel
- Divide each data channel in the difference map into cells and do a robustbackground estimate in each.

Outputs:

- New master dark frame (MASTERDARK)
- Dark frame difference image (DIFFIMG)
- Dark difference image statistics table (DIFFIMSTATS)

QC1 Parameters:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	85 of 124

DARKRMS PARTICLE_RATE

Vircam Functions Used: vircam imcombine

Additional Fatal Error Conditions:

None

Additional Non-fatal Error Conditions:

- Missing calibDB mean dark frame. (No comparison with previous frame done)
- Missing calibDB confidence map (All pixels assumed to be good)
- Missing channel table (No comparison with previous frame done)
- Library mean dark frame data array dimensionality mismatch with new mean dark frame. (No comparison with previous frame done)

7.3 vircam_dark_current

Name:

vircam_darkcurrent

Purpose:

Analyse a series of dark exposures for slope, i.e. dark-current per second.

Type:

Detector Calibration

Input Data:

- A series of DARK exposures at a variety of different exposure times
- Linearity channel table
- Library bad pixel mask

Parameters:

float thresh

The threshold in units of background sigma above or below the local mean value which defines whether a pixel is bad or not

Algorithm:

• Perform robust iterative linear fit across all exposures at each pixel position

Outputs:

• Dark current map

QC1 Parameters:

DARKCURRENT

Vircam Functions Used:

None

Additional Fatal Error Conditions:

None

Additional Non-fatal Error Conditions:

None

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	86 of 124

7.4 vircam_dome_flat_combine

Name:

vircam_dome_flat_combine

Purpose:

Combine a series of dome flat exposures and create confidence maps.

Type:

Detector calibration

Input Data:

- List of dome flat exposures
- Master dark frames of the appropriate exposure time
- Linearity channel mask
- Master bad pixel mask

Parameters:

float low

The lower image flux limit to define an under-exposed flat field image float **high**

The upper image flux limit to define a saturated (over-exposed) flat field image.

Algorithm:

- Remove any images that are saturated or underexposed.
- Process remaining images to linearize and remove dark current.
- Combine the dome flat exposures with rejection.
- Form a confidence map

Outputs:

- New master dome flat (MASTERDOME)
- New master dome flat confidence map (CONFMAP)

QC1 Parameters:

FLATVAR

Vircam Functions Used:

vircam_imcombine, vircam_mkconf, vircam_darkcor, vircam_lincor

Additional Fatal Error Conditions:

- All images saturated
- Missing calibDB mean dark frame
- Missing linearity channel mask

Additional Non-fatal Error Conditions:

• Missing bad pixel mask (No pixels flagged as bad)

7.5 vircam_detector_noise

Name:

vircam_detector_noise

Purpose:

Measure the detector readout noise and gain

Type:

Detector calibration

Input Data

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	87 of 124

- Two dome flat frames
- Two dark frames

Parameters:

None

Algorithm:

- Form difference images of the two dome flats and the two dark frames
- Do statistics as outlined in section 2.4 to give an estimate of read noise and gain

Outputs:

• Read noise and gain estimates

QC1 Parameters:

READNOISE

GAIN

Vircam Functions Used:

vircam_darkcor

Additional Fatal Error Conditions:

• Non-physical result

Additional Non-fatal Error Conditions:

None

7.6 vircam_linearity_analyse

Name:

vircam_linearity_analyse

Purpose:

Create linearity curves for each detector channel and bad-pixel maps

Type:

Detector calibration

Input Data:

- A series of dome flat exposures taken under constant illumination with varying integration times.
- Channel map
- A master dark frame for each integration time used in the dome series

Parameters:

int **nord**

The order of the polynomial to be fit to the linearity curve of each channel

- Process each flat exposure by removing the reset anomaly with the appropriate dark frame
- Combine timing information from channel map and known read and reset times to derive the *k* factors needed as indicated in section 2.2.2.
- Solve for coefficients and store them in linearity channel table.
- Combine the series with rejection into a normalised mean flat field
- Divide the series by the mean frame

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	88 of 124

- Find pixels in the ratio maps whose values are over or under the input threshold value and flag them as bad
- Compute the number of bad pixels in this new bad pixel mask and in the calibDB bad-pixel mask. Compute the difference.

Outputs:

• Linearity channel table (LCHANTAB)

QC1 Parameters:

LINEARITY LINFITQUAL

BAD_PIXEL_STAT

Vircam Functions Used:

vircam darkcor, vircam genlincur

Additional Fatal Error Conditions:

- Missing channel map
- Missing dark frames

Additional Non-fatal Error Conditions:

None

7.7 vircam_twilight_combine

Name:

Type:

vircam_twilight_combine

Purpose:

Create a master twilight flat field and initial confidence map

Detector calibration

Input Data:

- A series of twilight flat exposures taken in a single passband
- A master dark frame for each integration time used in the flat field series.
- Linearity channel table
- A master bad pixel mask

Parameters:

float low

The lower image flux limit to define an under-exposed flat field image float **high**

The upper image flux limit to define a saturated (over-exposed) flat field image.

- Examine a list of twilight flat-field exposures and reject all those that are over or under exposed.
- Linearize and remove the dark current from the remaining flat frames.
- Combine the flat frames with rejection.
- Normalise each detector's flat-field by the ensemble median level over all the detectors' flat-fields. The normalised level in each image is the detector gain correction.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	89 of 124

• Create the confidence map from the mean flat field and the calibDB bad pixel mask

Outputs:

- Mean flat field and gain corrections for the input data passband (MASTERTWIFLAT)
- Initial confidence map for the input data passband (CONFMAP)

QC1 Parameters:

GAIN_CORRECTION

FLATVAR

Vircam Functions Used:

vircam_darkcor, vircam_lincor, vircam_imcombine, vircam_mkconf

Additional Fatal Error Conditions:

- Failure to include a master dark frame for each exposure time used in the twilight flat exposures
- Missing linearity channel table
- All input flats over or under exposed

Additional Non-fatal Error Conditions:

• Missing calibDB bad pixel mask (No pixels flagged as bad)

7.8 vircam_mesostep_analyse

Name:

vircam_mesostep_analyse

Purpose:

Create a map of illumination corrections using a mesostep sequence of a standard stars

Type:

Detector calibration

Input Data:

- A series of exposures of a sparse secondary standard field that has been offset in a regular raster
- A master dark frame for the given integration time
- A master flat field for the given passband
- A master confidence map for the given passband
- Linearity channel table
- Persistence mask
- Crosstalk table
- Photometric standard catalogue

Parameters:

float **thresh**

Detection threshold for object extraction.

- Process the observations by linearising, dark correction and flat fielding
- Compute the zero-point of standard stars on a grid of each of a series of meso-stepped exposures.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	90 of 124

- Work out the residual zero-point at each position on the detector relative to the zero-point at the centre.
- Write the illumination correction table.

Outputs:

• Illumination correction table (see 5.6) (ILLCORTAB)

QC1 Parameters:

ILLUMCOR_RMS

Vircam Functions Used:

vircam_darkcor, vircam_lincor, vircam_flatcor, vircam_defringe, vircam_persist, vircam_crosstalk, vircam_imcore, vircam_getstds, vircam_platesol, vircam_matchstds

Additional Fatal Error Conditions:

- Missing master calibration frames
- Missing master calibration tables
- Missing photometric standard catalogue

Additional Non-fatal Error Conditions:

None

7.9 vircam_persistence_analyse

Name:

vircam_persistence_analyse

Purpose:

Analyse an image of bright stars and subsequent dark exposures to compute the persistence decay rate

Type:

Detector calibration

Input Data:

- An observation of bright stars taken close to saturation
- A master dark frame for the given integration time
- A master flat field for the given passband
- A master confidence map for the given passband
- Linearity channel table
- A series of dark exposures taken at regular time intervals afterwards

Parameters:

float **thresh**

Detection threshold for object extraction

Algorithm:

- Process the observation by linearising, dark correction and flat fielding
- Compute the flux and position of bright stars on an image.
- Look on subsequent dark exposures at the same location and compute the flux.
- Fit the flux vs. Δt curve to an exponential to work out the characteristic decay constant, τ_0 and the flux a zero time.

Outputs:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	91 of 124

- Persistence decay time constant
- Persistence fraction at zero time

QC1 Parameters:

PERSIST_DECAY

PERSIST_ZERO

Vircam Functions Used:

vircam_darkcor, vircam_lincor, vircam_flatcor, vircam_defringe, vircam_imcore

Additional Fatal Error Conditions:

- Missing master calibration frames
- Missing master calibration tables
- No dark frames available after star observation.

Additional Non-fatal Error Conditions:

None

7.10 vircam_crosstalk_analyse

Name:

vircam_crosstalk_analyse

Purpose:

Analyse a series of images to work out the crosstalk matrix for all detector sections

Type:

Detector calibration

Input Data:

- A series of exposures of a bright star. The star should be centred in each of the instrument's data channels.
- Master flat and confidence map for the given passband
- Master dark frame for the given exposure time
- Channel table

Parameters:

float **thresh**

Detection threshold for object extraction

Algorithm:

- Locate objects on each exposure.
- Use channel table to predict location of crosstalk images of the bright star and locate the crosstalk image in the object catalogue.
- Create crosstalk matrix from the ratio of the fluxes for a given channel combination.

Outputs:

• Crosstalk matrix as described in 5.5 (XTALK)

QC1 Parameters:

CROSS_TALK

Vircam Functions Used:

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	92 of 124

vircam_imcore

Additional Fatal Error Conditions:

• Missing channel table or confidence map

Additional Non-fatal Error Conditions:

None

7.11 vircam_jitter_microstep_process

Name:

vircam_jitter_microstep_process

Purpose:

Process a sequence of target data that may have been both jittered and microstepped. If sufficient qualifying data were taken, combine into a mean sky map.

Type:

Science

Input Data:

- A jittered and/or microstepped sequence of exposures of a target region.
- Library mean dark frame for the given exposure and integration time.
- Library mean flat field frame for the given passband
- Library confidence map for the given passband
- Library fringe frame
- Linearity channel table
- Crosstalk matrix
- Persistence mask
- Astrometric standard data (through CPL interface to 2MASS)
- Photometric standard data (through CPL interface to 2MASS)

Parameters:

float persist

Persistence time constant for the detector

float **thresh**

Detection threshold in units of background sigma for object extraction

- Remove crosstalk images
- Process the images by linearising and removing dark current and flat fielding
- De-fringe
- Remove persistent images
- Work out microstep offsets using header information
- Combine the images into super-frames by interleaving using the microstep offsets
- Work out jitter offsets by cross-correlating stellar object positions on super-frame images
- Combine the super-frame images with offsets into a single stacked image

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Librar y Dosign	Date:	2005-08-12
System		Page:	93 of 124

- Generate a catalogue of objects on the stacked image and do a morphological classification
- Fit a WCS using astrometric standards that appear in the stacked image catalogue. Update the FITS headers of the stacked image as well as those of the super-frames and the single exposure images.
- Calculate photometric zero point using instrumental magnitudes, magnitudes of photometric standards, and illumination corrections.
- Apply illumination correction to catalogue

Sky map algorithm:

- Process the images to linearize and remove dark current
- Combine the images with biasing and rejection.
- Normalise each detector's flat-field by the ensemble median level over all the detectors' flat-fields. The normalised level in each image is the detector gain correction.
- Create the confidence map from the mean flat field and the master bad pixel mask

Outputs:

- Single exposure images that corrected for linearity, dark current, flat field, sky, image persistence and crosstalk. A full WCS will appear in the header
- Interleaved super-frame images from the above.
- Stacked jitter images from the super-frames. Full WCS and photometric zero point will appear in the FITS header.
- Associated confidence maps for each output image (CONFMAP)
- Object catalogue in the form of a FITS table (OBJCAT)

QC1 Parameters:

WCS DCRVAL1 WCS DCRVAL2 WCS DTHETA WCS DSCALE WCS SHEAR WCS RMS MEAN SKY SKY NOISE SKY RESET_ANOMALY FRINGE RATIO NOISE OBJ IMAGE SIZE APERTURE CORR ELLIPTICITY ZPT 2MASS LIMITING MAG

Vircam Functions Used:

vircam_darkcor, vircam_lincor, vircam_flatcor, vircam_defringe, vircam_persist, vircam_matchxy, vircam_crosstalk, vircam_imcore, vircam_getstds, vircam_platesol, vircam_matchstds, vircam_imstack, vircam_sky_flat

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	94 of 124

Additional Fatal Error Conditions:

- Missing master calibration frames
- Missing master calibration tables
- Object catalogues don't match unable to work out jitter offsets
- Microstep non-integral offsets deviate too much from 0.5 pixel

Additional Non-fatal Error Conditions:

- Failure to match object catalogue entries to astrometric standards. (Recipe will proceed with WCS as defined in the raw telescope header)
- Failure to match object catalogue entries to photometric standards. (Recipe will proceed to the end without a photometric zeropoint.)

7.12 vircam_standard_process

Name:

vircam_standard_process

Purpose:

Process sequence of photometric standard data that may have been both jittered and microstepped; if sufficient standards are present, also compute an illumination map.

Type:

Science

Input Data:

- A jittered and microstepped sequence of exposures of a standard star region.
- Library mean dark frame for the given exposure and integration time.
- Library mean flat field frame for the given passband
- Library confidence map for the given passband
- Library fringe frame
- Linearity channel table
- Crosstalk matrix
- Persistence mask
- Astrometric standard data
- Photometric standard data

Parameters:

float **persist**

Persistence time constant for the detector

float **thresh**

Detection threshold in units of background sigma for object extraction

- Process the images by linearising and removing dark current and flat fielding
- De-fringe
- Remove persistent images
- Remove crosstalk images
- Work out microstep offsets using header information

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Libiai y Dosign	Date:	2005-08-12
System		Page:	95 of 124

- Combine the images into super-frames by interleaving using the microstep offsets
- Work out jitter offsets by cross-correlating object positions on super-frame images
- Combine the super-frame images with offsets into a single stacked image
- Generate a catalogue of objects on the stacked image and do a morphological classification
- Fit a WCS using astrometric standards that appear in the stacked image catalogue. Update the FITS headers of the stacked image as well as those of the super-frames and the single exposure images.
- Calculate photometric zero point using instrumental magnitudes and magnitudes of photometric standards.
- Apply illumination correction to catalogue

Outputs:

- Single exposure images that corrected for linearity, dark current, flat field, sky, image persistence and crosstalk. A full WCS will appear in the header
- Interleaved super-frame images from the above.
- Stacked jitter images from the super-frames. Full WCS and photometric zero point will appear in the FITS header.
- Associated confidence maps for each output image (CONFMAP)
- Object catalogue in the form of a FITS table (OBJCAT)

QC1 Parameters:

WCS DCRVAL1 WCS DCRVAL2 WCS DTHETA WCS DSCALE WCS SHEAR WCS RMS **SATURATION** MEAN SKY SKY NOISE SKY RESET ANOMALY FRINGE RATIO NOISE OBJ IMAGE SIZE APERTURE CORR ELLIPTICITY ZPT STDS LIMITING MAG ILLUMCOR RMST

Vircam Functions Used:

vircam_darkcor, vircam_lincor, vircam_flatcor, vircam_defringe, vircam_persist, vircam_matchxy, vircam_crosstalk, vircam_imcore, vircam_getstds, vircam_platesol, vircam_matchstds, vircam_imstack, vircam_illum

Additional Fatal Error Conditions:

• Missing master calibration frames

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	96 of 124

- Missing master calibration tables
- Object catalogues don't match unable to work out jitter offsets
- Microstep non-integral offsets deviate too much from 0.5 pixel

Additional Non-fatal Error Conditions:

- Failure to match object catalogue entries to astrometric standards. (Recipe will proceed with WCS as defined in the raw telescope header)
- Failure to match object catalogue entries to photometric standards. (Recipe will proceed to the end without a photometric zero point.)

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	97 of 124

8 Validation tests

Validation procedures shall be developed along with the software for the different function levels:

- Unitary test for each low-level Data Reduction Library function
- Reduction tests based on the generic CPL plugin application

Test data will be provided for all of these validation procedures. In some cases this will consist of laboratory test data using the real VISTA focal plane detectors. In others, data from other instruments, namely WFCAM will be made to look like VISTA data. Where nothing else is available, simulated data will be generated and wrapped to look like VISTA data files. In the table below we give a list of the test data files that will be available for use in the validation procedures. Each FITS file will contain data for all sixteen detectors. The 'rich_field' files will consist of observations of a medium rich stellar field, which can be used for many of the validation tests we require. The series will be a 5 point jitter series, where each jitter point is also a 4 point microstep sequence.

Included in the test suite will be files that can be used in comparison with output from test procedures on functions and plugins. These will be monitored to ensure that:

- the image data arrays and table columns all contain exactly the same data
- a selection of relevant FITS header keywords have been created and are consistent with the test output files.

datafile	comment		
bpm.fits	A bad pixel mask		
chantab.fits	The channel table (5.2)		
dark_after_richXX.fits	A series of dark frames taken after the last rich fieldXX		
	frame.		
darkXX.fits	A list of dark frames with the same exposure time as		
	rich_fieldXX		
darkXX_exp.fits	A series of dark frames with exposure times the same as		
	those for domeflatXX_raw.fits		
domeflatXX.fits	A series of dome flat exposures done with a series of		
	exposure times with constant illumination. These have been		
	dark corrected.		
domeflatXX_raw.fits	A series of dome flat exposures done with a series of		
	exposure times with constant illumination. These have not		
	been dark corrected.		
fringe.fits	A mean fringe frame		
illumtab.fits	An illumination correction table for rich_field01.fits		
lchantab.fits	The linearity channel table		
match_stds.fits	Matched standards table of objtab01.fits matched to		
	stds_2mass.fits		
meanconf.fits	A confidence map arising from twiflatXX.fits.		
meandark.fits	A mean dark frame formed from the list darkXX.fits		

• output QC1 parameters match the known values from the test suite.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	98 of 124

meandomeflat.fits	A mean dome flat formed from domeflatXX.fits		
meanreset.fits	A mean reset frame formed from the list resetXX.fits		
meantwiflat.fits	A mean twilight flat field frame formed from twiflatXX.fits		
objtab01.fits	The object tables for rich_field01_sig.fits and		
objtab02.fits	rich_field02_sig.fits for a given set of extraction parameters		
persistmask.fits	A persistence mask for the rich_fieldXX series		
resetXX.fits	A list of reset frames		
rich_comb.fits	The rich_field_sig series combined with no coordinate offsets		
rich_comb_conf.fits	The confidence map formed from combining rich_field_sig files with no coordinate offsets.		
rich_field01_dark.fits	The first rich_field file – dark corrected using meandark.fits		
rich_field01_flat.fits	The first rich_field file – flat fielded using meantwiflat.fits		
rich_field01_lin.fits	The first rich field file – linearised using lchantab.fits		
rich_field01_sigf.fits	The first rich field file with linearity, dark, and flat		
	corrections applied		
rich_fieldXX.fits	A raw microstep and jitter sequence of a rich photometric standard field		
rich_fieldXX_meso.fits	A raw meso-stepped series of the rich_field region.		
rich_fieldXX_sig.fits	The rich field series with linearity, dark, flat and fringe corrections applied		
rich_stack.fits	A stack of rich_fieldXX_sig.fits series.		
rich_stack_conf.fits	A confidence map formed from stacking the rich fieldXX sig.fits series		
rich_super.fits	A super frame of the first microstep sequence in the rich fieldXX sig series.		
rich super conf.fits	The confidence map formed from interleaving the first		
	microstep sequence in the rich_fieldXX_sig series.		
stds_2mass.fits	A list of 2mass standards that appear on rich_field01.fits		
twiflatXX.fits	A list of twilight flat field frames in one colour. These have		
	been linearity and dark corrected		
twiflatXX_raw.fits	A list of raw twilight flat field frames in one colour		
xtalk.fits	A full crosstalk matrix		

Table 8-1 A list of data files to be made available for testing vircam functions and plugins

In the tables below we give a list of each of the VIRCAM functions and plugins from chapters 6 and 7 and the input files required from the test data suite. The files in the column 'output test files' will be used in to test consistency of result with the output of each function or plugin.

function	input test files	output test files
vircam_crosstalk	rich_field01.fits	xtalk.fits
vircam_darkcor	rich_field01.fits meandark.fits	rich_field01_dark.fits
vircam_defringe	rich_field01_sigf.fits fringe.fits	rich_field01_sig.fits

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	99 of 124

vircam_flatcor	rich_field01.fits	rich_field01_flat.fits
	meantwiflat.fits	
vircam_genlincur	domeflatXX.fits	lchantab.fits
	chantab.fits	
vircam_getstds	rich_field01.fits	stds_2mass.fits
vircam_illum	rich_field01_sig.fits	illumtab.fits
vircam_imcombine	rich_fieldXX_sig.fits	rich_comb.fits
	meanconf.fits	rich_comb_conf.fits
vircam_imcore	rich_field01_sig.fits	objtab01.fits
	meanconf.fits	
vircam_imstack	rich_fieldXX_sig.fits	rich_stack.fits
		rich_stack_conf.fits
vircam_interleave	rich_fieldXX_sig.fits	rich_super.fits
		rich_super_conf.fits
vircam_lincor	rich_field01.fits	rich_field01_lin.fits
	lchantab.fits	
vircam_matchstds	objtab01.fits	match_stds.fits
	stds_2mass.fits	
vircam_matchxy	objtab01.fits	
	objtab02.fits	
vircam_mkconf	twiflatXX.fits	meanconf.fits
vircam_persist	rich_fieldXX_sig.fits	
	dark_after_richXX.fits	
vircam_photcal	rich_stack.fits	
	stds_2mass.fits	
vircam_platesol	rich_field01_sig.fits	
	match stds.fits	

Table 8-2 Files to be used to test each vircam function

plugin	input test files	output test files
vircam_reset_combine	resetXX.fits	meanreset.fits
vircam_dark_combine	darkXX.fits	meandark.fits
vircam_dome_flat_combine	domeflatXX.fits	meandomeflat.fits
vircam_detector_noise	domeflatXX.fits	
	darkXX.fits	
vircam_linearity_analyse	domeflatXX_raw.fits	lchantab.fits
	darkXX_exp.fits	bpm.fits
	chantab.fits	
vircam_twilight_combine	twiflatXX_raw.fits	meantwiflat.fits
	meandark.fits	meanconf.fits
	lchantab.fits	
	bpm.fits	

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	100 of 124

vircam_mesostep_analyse	rich_fieldXX_meso.fits	illumtab.fits
	meandark.fits	
	meantwiflat.fits	
	lchantab.fits	
	fringe.fits	
vircam_persistence_analyse	rich_fieldXX.fits	
	meandark.fits	
	meantwiflat.fits	
	lchantab.fits	
	meanconf.fits	
vircam_crosstalk_analyse	rich_fieldXX.fits	xtalk.fits
	meandark.fits	
	meantwiflat.fits	
	lchantab.fits	
	meanconf.fits	
vircam_sky_flat_combine	rich_fieldXX.fits	rich_comb.fits
	meandark.fits	rich_comb_conf.fits
	meantwiflat.fits	
	fringe.fits	
	lchantab.fits	
	meanconf.fits	
	bpm.fits	
vircam_jitter_microstep_process	rich_fieldXX.fits	rich_stack.fits
	meandark.fits	rich_stack_conf.fits
	meantwiflat.fits	
	fringe.fits	
	lchantab.fits	
	meanconf.fits	
	xtalk.fits	
	persistmask.fits	
vircam_standard_process	rich_fieldXX.fits	rich_stack.fits
	meandark.fits	rich_stack_conf.fits
	meantwiflat.fits	illumtab.fits
	fringe.fits	
	lchantab.fits	
	meanconf.fits	
	xtalk.fits	
	persistmask.fits	

Table 8-3 Fil	les to use in	testing each	vircam plugin
---------------	---------------	--------------	---------------

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	101 of 124

9 Development Plan

Following [AD1] the DRL development is summarised in Table 9-1. In keeping with the fact that VISTA will (initially) be a single-instrument telescope, and so will essentially have a single commissioning period (no COM2), milestone 5 is omitted in order to keep the numbering consistent with general VLT planning.

Act ID	Milestone	Timeline	Deliv. ID	Deliverables
M-02	FDR	-4w	DR2	This document
	PAE	-6m	-	Data Reduction Library
				prototype with some basic
				dome-flat capability; will test
				instrument simulation data-
				interface compatibility.
M-03	PAE	-4w	DR3	Data Reduction Library v0.1
				Including: all basic planned
				functionality such that
				laboratory data from the
				instrument may be pipelined.
M-04	COM1	-4w	DR4	Data Reduction Library v0.5
				Including: bug fixes found at
				PAE plus any new (previously
				unplanned) functionality
				required as a result of PAE
				detector characterisation.
M-06	PAC	-4w	DR6	Data Reduction Library v1.0
				Including: more bug fixes and
				any refinements and additions
				to analysis required as a result
				of experience gained with real
				commissioning data.
M-09	SO1	+8w	DR11	Data Reduction Library v1.y
				Including: more of above, and
				feedback from early science
				users.
		+8w	DR11	Final version this document

Table 9-1 Development Schedule

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	102 of 124

10 Appendix: QC1 Parameters

```
#*****
# E.S.O. VISTA project
#
  "@(#) $Id: dicVIRCAM_QC.txt,v 0.7 2004/07/29 12:05:28 vltsccm Exp $"
#
#
# VIRCAM_QC dictionary
#
# who
                            what
              when
                                          _____
#----
               _ _ _ _ _ _ _ _
                             - - -
# pbunclark
              2004-10-05
                            Original
# pbunclark
              2004-11-19
                            Many clarifications
                            DID parameter added
#
                            POINTING -> WCS set
#
                            SEEING -> IMAGE SIZE
# mji
              2004-11-22
                             Updated comments and descriptions
                            and rationalized order
#
              2004-12-08
                            add FRINGE_RATIO, ILLUMCOR_RMS
# jrl
# jrl
              2004-12-13
                           change FRINGE_RATIO to FRINGE_RATIO,
                            add LINFITQUAL
#
#
       NAME
#
       ESO-DFS-DIC.VIRCAM_QC - Data Interface Dictionary for VIRCAM Quality
#
                        control (level 1) parameters.
#
#---
Dictionary Name: ESO-VLT-DIC.VIRCAM_QC
                 ESO VISTA VIRCAM
Scope:
Source:
                 ESO VLT
Version Control: @(#) $Id: 0.7 $
Revision:
                 $Revision: 0.2 $
Date:
                 2004-12-13
Status:
                 Development
Description:
                  VIRCAM Quality-Control
Parameter Name: QC DID
header|qc-log
Context:
                process
Type:
                  string
Value Format:
                 %30s
Unit:
Comment Format:
                 Data dictionary for VIRCAM QC.
Description:
                 Name/version of ESO DID to which QC keywords comply.
                 QC DARKCURRENT
Parameter Name:
Class:
                 ext-header header qc-log
Context:
                  process
Type:
                  double
Value Format:
                  %f
Unit:
                  adu/sec
Comment Format:
                  average dark current on frame [adu/sec].
Description:
                  measured using the median of the pixel values,
                 can later be compared with similar darks for trends
                 QC DARKRMS
Parameter Name:
                 ext-header | header | qc-log
Class:
Context:
                  process
Type:
                  double
Value Format:
                  %f
Unit:
                  adu
Comment Format:
                  measure of rms noise of dark frame [adu].
Description:
                  rms is defined here as the Gaussian equivalent MAD ie.
                  1.48*median-of-absolute-deviation from median
                  The rms can later be compared with library values
                  for darks of the same integration and exposure times.
                  OC PARTICLE RATE
Parameter Name:
Class:
                  ext-header | header | qc-log
```

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	103 of 124

Context: Type: Value Format: Unit: Comment Format: Description:	<pre>process double %f count/sec cosmic ray/spurion rate [count/sec]. average no. of pixels rejected during combination of dark frames, used to give an estimate of the rate of cosmic ray hits for each detector. This can later be compared with previous estimates and monitored.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC RESETVAR ext-header header qc-log process double %f percentage percentage variation in current reset frame [percentage]. variation is defined here as the Gaussian equivalent MAD ie. 1.48*median-of-absolute-deviation from unity after normalising by median level ie. measuring the rms reset level variation. The rms can later be compared with library values for troubleshooting problems.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC READNOISE ext-header header qc-log process double %f electron readnoise [electron]. measured from the noise properties of the difference in two consecutive dark frames, using a MAD estimator as above for robustness against spurions. The noise properties of each detector should remain stable so long as the electronics/micro-code have not been modified.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: [percentage]. Description:	<pre>QC FLATVAR ext-header header qc-log process double %f percentage rms variation of flatfield pixel sensitivity per detector rms is defined here as the Gaussian equivalent MAD ie. 1.48*median-of-absolute-deviation from unity after normalising by median level ie. measuring the rms sensitivity variation. The rms can later be compared with library values for troubleshooting problems.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC GAIN ext-header header qc-log process double %f e/ADU gain [e/ADU]. determined from pairs of darks and flatfields of the same exposure/integration time and illumination by comparing the measured noise properties with the expected photon noise contribution. The gain of each detector should remain stable so long as the electronics/micro-code have not been modified.
Parameter Name: Class: Context: Type: Value Format: Unit:	QC BAD_PIXEL_STAT ext-header header qc-log process double %f scalar

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	104 of 124
Comment Format: Description:	fraction of bad pixels p determined from the stat from the ratio of two fl different average count The fraction of bad pixe cold) should not change	er detector [s istics of the atfield sequen levels. ls per detecto significantly	scalar]. pixel distribution nces of significantly or (either hot or with time.
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: [scalar]. Description:	QC GAIN_CORRECTION ext-header header qc-log process double %f scalar ratio of detector median the ratio of median coun for a given detector rel defines the internal gai These internal relative should be stable with ti	flatfield con ts in a mean t ative to the o n correction t detector gain me.	unts to global median Elat exposure ensemble For the detector corrections
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC LINEARITY ext-header header qc-log process double %f percentage the percentage average n derived from measured no detector interpolated to Although all infrared sy some degree, the shape a curve for each detector A single measure at 20k this although the full 1 examined quarterly [TBC]	on-linearity n-linearity cu 20k counts (i stems are non- nd scale of th should remain counts can be inearity curve to look for t	[percentage]. urves for each ADUs) level. -linear to he linearity constant. used to monitor es will need to be more subtle changes.
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC LINFITQUAL ext-header header qc-log process double %f scalar the RMS fractional error Derived by applying the data that were used to m residuals of the lineari linear value	in linearity linearity coes easure them. S sed data norma	fit [scalar] fficients to the image This is the RMS of the alised by the expected
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC SATURATION ext-header header qc-log process double %f ADU saturation level of brig determined from maximum from exposures in a stan The saturation level*gai characteristics of each	ht stars [ADU peak flux of d dard bright st n is a check d detector.]. detected stars tar field. on the full-well
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC PERSIST_DECAY ext-header header qc-log process double %f s mean exponential time de the decay rate of the pe on subsequent exposures exponential decay functi Requires an exposure on a series of darks.	cay constant rsistence of will be model on with time of a bright star	[s]. pright images Led using an constant tau. field followed

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
		Date:	2005-08-12
System		Page:	105 of 124

Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC PERSIST_ZERO ext-header header qc-log process double %f scalar fractional persistence at zero time (extrapolated) [scalar]. determined from the persistence decay behaviour from exponential model fitting. Requires an exposure on a bright star field followed a series of darks (as above)</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC CROSS_TALK ext-header header qc-log process double %f scalar average values for cross-talk component matrix [scalar]. determined from presence of +ve or -ve ghost images on other channels/detectors using exposures in bright star fields. Potentially a fully populated 256x256 matrix but likely to be sparsely populated with a small number of non-zero values of band-diagonal form. This QC summary parameter is the average value of the modulus of the off-diagonal terms. Values for the cross-talk matrix should be very stable with time, hardware modifications notwithstanding.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC WCS_DCRVAL1 ext-header header qc-log process double %e deg actual WCS zero point X - raw header value [deg]. measure of difference between dead-reckoning pointing and true position of the detector on sky. Derived from current polynomial distortion model and 6-constant detector model offset.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC WCS_DCRVAL2 ext-header header qc-log process double %e deg actual WCS zero point Y - raw header value [deg]. measure of difference between dead-reckoning pointing and true position of the detector on sky. Derived from current polynomial distortion model and 6-constant detector model offset.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC WCS_DTHETA ext-header header qc-log process double %e deg actual WCS rotation PA - raw PA header value [deg]. measure of difference between dead-reckoning PA and true position angle of the detector. Derived from current polynomial distortion model and 6-constant detector model effective rotation term.
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format:	QC WCS_SCALE ext-header header qc-log process double %e deg/pixel measured WCS plate scale per detector [deg/pixel].

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
		Date:	2005-08-12
System		Page:	106 of 124

Description:	measure of the average on-sky pixel scale of detector after correcting using current polynomial distortion model
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC WCS_SHEAR ext-header header qc-log process double %e deg power of cross-terms in WCS solution [deg]. measure of WCS shear after normalising by plate scale and rotation, expressed as an equivalent distortion angle. Gives a simple measure of distortion problems in WCS solution.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC WCS_RMS ext-header header qc-log process double %e arcsec robust rms of WCS solution for each detector [arcsec]. robust average of residuals from WCS solution for each detector. Measure of integrity of WCS solution.
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC MEAN_SKY ext-header header qc-log process double %f ADU mean sky level [ADU]. computed using a clipped median for each detector Sky levels should vary smoothly over the night. Strange changes in values may indicate a hardware fault.
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC SKY_NOISE ext-header header qc-log process double %f ADU rms sky noise [ADU]. computed using a MAD estimator with respect to median sky after removing large scale gradients. The sky noise should be a combination of readout-noise, photon-noise and detector quirks. Monitoring the ratio of expected noise to measured provides a system diagnostic at the detector level.</pre>
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC SKY_RESET_ANOMALY ext-header header qc-log process double %f ADU systematic variation in sky across detector [ADU]. robust average variation in background level for each detector, computed by measuring the large scale variation from a filtered 64x64 pixel background grid, where each background pixel is a clipped median estimate of the local sky level. Effectively generates an 32x32 sky level map and computes the MAD [TBC] of these values with respect to the global detector median. Monitoring the non-flatness of this gives a measure of reset-anomaly problems.
Parameter Name: Class: Context: Type: Value Format:	QC NOISE_OBJ ext-header header qc-log process integer %d

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010		
Data Flow	Library Design	Issue:	1.2		
Data Flow		Date:	2005-08-12		
System		Page:	107 of 124		
Unit: Comment Format: Description:	number number of classified noise objects per frame [number]. measured using an object cataloguer combined with a morphological classifier. The number of objects classified as noise from frame-to-frame should be reasonably constant; excessive numbers indicate a problem.				
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC IMAGE_SIZE ext-header header qc-log process double %f arcsec mean stellar image FWHM [arcsec]. measured from the average FHWM of stellar-classified images of suitable signal:to:noise. The seeing will obviously vary over the night with time and wavelength (filter). This variation should be predictable given local site seeing measures. A comparison with the expected value can be used as an indication of poor guiding, poor focus or instrument malfunction.</pre>				
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC APERTURE_CORR ext-header header qc-log process double %f mag 2 arcsec [mag] diam aperture flux correction. the aperture flux correction for stellar images due to flux falling outside the aperture. Determined using a curve-of-growth of a series of fixed-size apertures. Alternative simple measure of image profile properties, particularly the presence of extended PSF wings, as such monitors optical properties of system; also required for limiting magnitude computations.</pre>				
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC ELLIPTICITY ext-header header qc-log process double %f scalar mean stellar ellipticity [scalar]. the detected image intensity-weighted second moments will be used to compute the average ellipticity of suitable signal:to:noise stellar images. Shot-noise causes even perfectly circular stellar images to have non-zero ellipticity but more significant values are indicative of one of: optical, tracking and autoguiding, or detector hardware problems.</pre>				
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC ZPT_2MASS ext-header header qc-log process double %f mag lst-pass photometric zeropoint [mag]. the magnitude of a star that gives 1 detected ADU/s (or e-/s) for each detector, derived using 2MASS comparison stars for every science observation. This is a first pass zero-point to monitor gross changes in throughput. Extinction will vary over a night, but detector to detector variations are an indication of a fault.</pre>				
Parameter Name: Class: Context: Type: Value Format:	QC ZPT_STDS ext-header header qc-log process double %f				

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010	
Data Flow	Library Design	Issue:	1.2	
Data Flow		Date:	2005-08-12	
System		Page:	108 of 124	
Unit: Comment Format: Description:	<pre>mag photometric zeropoint [m the magnitude of a star (or e-/s) for each detec of VISTA standard star f in long-term system zero "average" zero-point dir variations (faults/mods The photometric zeropoin over time as a result of etc.</pre>	ag]. that gives 1 of tor, derived f ields. Combir -point propert ectly monitors in the system ts will undout the cleaning	detected ADU/s From observations hed with the trend ties, the ensemble s extinction notwithstanding) tbedly vary (slowly) of optical surfaces	
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC LIMITING_MAG ext-header header qc-log process double %f mag limiting mag ie. depth of exposure [mag]. estimate of 5-sigma limiting mag for stellar-like objects for each science observation, derived from QCs ZPT_2MASS, SKY_NOISE, APERTURE_CORR. Can later be compared with a target value to see if main survey requirements (ie. usually depth) are met.</pre>			
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>QC FRINGE_RATIO ext-header header qc-log process double %f scalar [scalar] Ratio of sky noise before to after fringe fit A robust estimate of the background noise is done before the first fringe fitting pass. Once the last fringe fit is done a final background noise estimate is done. This parameter is the ratio of the value before fringe fitting to the final value after defringing.</pre>			
Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	QC ILLUMCOR_RMS ext-header header qc-log process double %f mag [mag] RMS in illuminatio The RMS of the illuminat the frame.	n correction ion correctior	n over all of	

The above dictionary is illustrated as a FITS header extract as it will appear in the perdetector extension header:

HIERARCH	ESO	QC	DID	=	'ESO-VLT-DIC.	VIRC	AM_QC ' / Data dictionar
HIERARCH	ESO	QC	DARKCURRENT	=	200.000000	/	average dark current on frame [
HIERARCH	ESO	QC	DARKRMS	=	3.456000	/	measure of rms noise of dark fr
HIERARCH	ESO	QC	PARTICLE_RATE	<u> </u>	20.500000	/	cosmic ray/spurion rate [count/
HIERARCH	ESO	QC	RESETVAR	=	4.500000	/	percentage variation in current
HIERARCH	ESO	QC	READNOISE	=	150.000000	/	readnoise [electron].
HIERARCH	ESO	QC	FLATVAR	=	234.560000	/	rms variation of flatfield pixe
HIERARCH	ESO	QC	GAIN	=	1.600000	/	gain [e/ADU].
HIERARCH	ESO	QC	BAD_PIXEL_STA	AT=	= 0.006000	/	fraction of bad pixels per dete
HIERARCH	ESO	QC	GAIN_CORRECTI	ION	J= 0.950000	/	ratio of detector median flatfi
HIERARCH	ESO	QC	LINEARITY	=	0.030000	/	the percentage average non-line
HIERARCH	ESO	QC	LINFITQUAL	=	0.00000	/	the RMS fractional error in lin
HIERARCH	ESO	QC	SATURATION	=	65535.000000	/	saturation level of bright star
HIERARCH	ESO	QC	PERSIST_DECAY	<u> </u>	40.000000	/	mean exponential time decay con
HIERARCH	ESO	QC	PERSIST_ZERO	=	0.800000	/	fractional persistence at zero
HIERARCH	ESO	QC	CROSS_TALK	=	1.000000	/	average values for cross-talk c
HIERARCH	ESO	QC	WCS_DCRVAL1	=	5.555550e-04	/	actual WCS zero point X - raw h
HIERARCH	ESO	QC	WCS_DCRVAL2	=	-5.555500e-04	- /	actual WCS zero point Y - raw h
VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010				
-----------------------	-----------------------	------------	--------------------------				
Doto Flow	Library Design	Issue:	1.2				
Data Flow		Date:	2005-08-12				
System		Page:	109 of 124				
HIERARCH ESO QC WCS_D	THETA = 1.000000e-02	/ actual W	NCS rotation PA - raw PA				

HIERARCH	ESO	QC	WCS_SCALE	=	9.444400e-05	/	measured WCS plate scale per de
HIERARCH	ESO	QC	WCS_SHEAR	=	1.000000e-04	/	power of cross-terms in WCS sol
HIERARCH	ESO	QC	WCS_RMS	=	9.444400e-06	/	robust rms of WCS solution for
HIERARCH	ESO	QC	MEAN_SKY	=	12345.120000	/	mean sky level [ADU].
HIERARCH	ESO	QC	SKY_NOISE	=	2000.000000	/	rms sky noise [ADU].
HIERARCH	ESO	QC	SKY_RESET_ANC	DMZ	ALY= 123.450000	/	systematic variation in sky acr
HIERARCH	ESO	QC	NOISE_OBJ	=	150	/	number of classified noise obje
HIERARCH	ESO	QC	IMAGE_SIZE	=	0.500000	/	mean stellar image FWHM [arcsec
HIERARCH	ESO	QC	APERTURE_CORF	ર=	0.456000	/	2 arcsec [mag] diam aperture fl
HIERARCH	ESO	QC	ELLIPTICITY	=	0.021100	/	mean stellar ellipticity [scala
HIERARCH	ESO	QC	ZPT_2MASS	=	26.500000	/	1st-pass photometric zeropoint
HIERARCH	ESO	QC	ZPT_STDS	=	26.400000	/	photometric zeropoint [mag].
HIERARCH	ESO	QC	LIMITING_MAG	=	24.567000	/	limiting mag ie. depth of expos
HIERARCH	ESO	QC	FRINGE_RATIO	=	0.000000	/	[scalar] Ratio of sky noise bef
HIERARCH	ESO	QC	ILLUMCOR_RMS	=	0.000000	/	[mag] RMS in illumination corre

The following table references the QC parameters with the functions and recipes where they are generated:

QC PARAMETER	FUNCTION	RECIPE
APERTURE_CORR	imcore	jitter_microstep_process
		standard_process
BAD_PIXEL_STAT		linearity_analyze
CROSS_TALK		crosstalk_analyse
DARKCURRENT		dark_combine
DARKRMS		dark_current
ELLIPTICITY	imcore	jitter_microstep_process
		standard_process
FLATVAR		dome_flat_combine
		twilight_combine
		sky_flat_combine
FRINGE_RATIO	defringe	jitter_microstep_process
		standard_process
GAIN		detector_noise
GAIN_CORRECTION		twilight_combine
		sky_flat_combine
ILLUMCOR_RMS	illum	mesostep_analyse
		standard_process
IMAGE_SIZE	imcore	jitter_microstep_process
		standard_process
LIMITING_MAG	photcal	jitter_microstep_process
		standard_process
LINEARITY	genlincur	linearity_analyse
LINFITQUAL	genlincur	linearity_analyse
MEAN_SKY	imcore	jitter_microstep_process
		standard_process
NOISE_OBJ	imcore	jitter_microstep_process
		standard_process
PARTICLE_RATE		dark_combine

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	110 of 124

PERSIST_DECAY		persistence_analyse
PERSIST_ZERO		persistence_analyse
READNOISE		detector_noise
RESETVAR		reset_combine
SATURATION	imcore	standard_process
SKY_NOISE	imcore	jitter_microstep_process
_		standard_process
SKY_RESET_ANOMALY	imcore	jitter_microstep_process
		standard_process
WCS_DCRVAL1	platesol	jitter_microstep_process
		standard_process
WCS_DCRVAL2	platesol	jitter_microstep_process
		standard_process
WCS_DTHETA	platesol	jitter_microstep_process
		standard_process
		standard_process
WCS_RMS	platesol	jitter_microstep_process
		standard_process
WCS_SCALE	platesol	jitter_microstep_process
		standard_process
WCS_SHEAR	platesol	jitter_microstep_process
		standard_process
ZPT_2MASS	photcal	jitter_microstep_process
ZPT_STDS	photcal	standard_process

11 Appendix: DRS Dictionary

```
*****
# E.S.O. VISTA project
#
# "@(#) $Id: ESO-VLT-DIC.VIMOS_DRS,v 0.1 2005/04/04 vltsccm Exp $"
#
#
# VIRCAM_QC dictionary
#
                when
# who
                                 what

        # who
        when
        what

        #-----
        ----
        ---

        # pbunclark
        2005-04-04
        Original

                                                  _____
                                                                          _____
               2005-04-15
                               various tidyups
# jrl
Dictionary Name: ESO-VLT-DIC.VIRCAM_DRS
          DFS
ESO VLT
Scope:
Source:
Source:ESO VLTVersion Control:@(#) $Id: 0.1 $Revision:0.1Date:2005-04-15Status:DevelopmentDescription:VIRCAM Processing keywords
       .
_____
#----
                                                -----
# General keywords
#
Parameter Name: DRS DID
Class:
                   header
```

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Library Design	Date:	2005-08-12
System		Page:	111 of 124

Contout:	DROCECC
Type:	PROCESS
Value Format:	\$20g
Unit:	
Comment Format:	Data dictionary for VIRCAM DRS
Description:	Name/version of ESO DID to which DRS
-	keywords comply.
Parameter Name:	DRS XTCOR
Class:	header
Context:	PROCESS
Type:	string
Value Format:	δS
Unit: Commont Format:	Greatelly metric table
Degaription:	Name of the grogatalk matrix table used to process
Description	this image
Parameter Name:	DRS DARKCOR
Class:	header
Context:	PROCESS
Type:	string
Value Format:	ទំន
Unit:	
Comment Format:	ilat ileld image
Description:	The name of the dark image specified in
	darksrc
Parameter Name:	DRS DARKSCL
Class:	header
Context:	PROCESS
Type:	double
Value Format:	۶f
Unit:	
Comment Format:	Dark scale factor
Description:	The scale factor used in the dark subtractionon
Parameter Name:	DRS FRINGEI
Class:	header
Context:	PROCESS
Iype.	string
Unit:	35
Comment Format:	Fringe file of nth pass
Description:	The name of the fringe file used in the nth
-	defringing pass
Parameter Name:	
-	DRS FRNGSCI
Class:	header
Class: Context:	header PROCESS
Class: Context: Type:	header PROCESS double
Class: Context: Type: Value Format: Unit:	header PROCESS double %f
Class: Context: Type: Value Format: Unit: Comment Format:	header PROCESS double %f scale factor nth defringe pass
Class: Context: Type: Value Format: Unit: Comment Format: Description:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass
Class: Context: Type: Value Format: Unit: Comment Format: Description:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name:	<pre>DRS FRAGSCI header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Carment Format:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The news of the flat field image specified in
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description:	header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT header</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT header PROCESS</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Description:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT header PROCESS double</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Type: Value Format:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT header PROCESS double %f</pre>
Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Description: Parameter Name: Class: Context: Type: Value Format: Unit: Comment Format: Unit: Comment Format:	<pre>DRS FRAGECT header PROCESS double %f scale factor nth defringe pass The scale factor for the nth defringing pass DRS FLATCOR header PROCESS string %s flat field image The name of the flat field image specified in flatsrc DRS MAGZPT header PROCESS double %f mag [</pre>

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	112 of 124

Description:	The calculated photometric zero point for the image
Parameter Name:	DRS MAGZERR
Class:	header
Context:	PROCESS
Type:	double
Value Format:	%f
Unit:	mag
Comment Format:	[mag] RMS of photometric zero point
Description.	zero point of the image
Parameter Name:	DRS MAGNZPT
Class:	header
Context:	PROCESS
Type:	integer
Value Format:	%d
Unit: Commont Format:	No stora in 7DT sola
Degaription:	NO. Stars III 2PI Calc
Description	zero-point calculation
Parameter Name:	DRS VIRXOFF
Class:	header
Context:	PROCESS
Type:	double
Value Format:	%f
Unit:	
Comment Format:	X-pixels to shift input image
Description:	The number of pixels in X by which to shift
	the current input image relative to the
	output grid. Ignored unless useoffsets has
	been set
Parameter Name:	DRS VIRYOFF
Class:	header
Context:	PROCESS
Type:	double
Value Format:	%f
Unit:	
Comment Format:	Y-pixels to shift input image
Description:	The number of pixels in Y by which to shift
	the current input image relative to the
	output grid. Ignored unless useoffsets has
	been set
Parameter Name:	DRS VXXXXX
Class:	header
Context:	PROCESS
Type:	string
Value Format: Unit:	%s
Comment Format:	one input of this combination
Description:	A set of FITS keywords that lists the files
-	that were combined to form this output file.
	This establishes the provenance of the output
	file.
Daramator Nama:	
Clace:	header
Ciass. Context:	PROCESS
Type:	double
Value Format:	%f
Unit:	ADU
Comment Format:	[ADU] Mean sky level
Description:	The mean sky level in the image
Parameter Name:	DRS SKYNOISE
Class:	header
Context:	PROCESS
Trme.	
iype.	double

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	113 of 124

Unit: Comment Format: Description:	ADU [ADU] Mean sky noise The mean sky noise in the image
Parameter Name: Class: Context:	DRS LINCOR header PROCESS
Type: Value Format: Unit:	string %s
Comment Format: Description:	linearity channel table The name of the linearity channel table specified in lchntab
Parameter Name: Class:	DRS FLATIN header
Context: Type:	PROCESS string
Value Format: Unit:	%S
Comment Format: Description:	flat field used The name of the flat field frame that was used to create this confidence map
Parameter Name: Class:	DRS BPMIN header
Context:	PROCESS
Type. Value Format: Unit:	string %s
Comment Format: Description:	bad pixel map used The name of the bad pixel mask image that was used to create this confidence map
Parameter Name:	DRS PERMASK
Context:	PROCESS
Type: Value Format:	string %s
Comment Format:	persistence mask used
Description:	The name of the persistence mask image that was used to create this confidence map
Parameter Name:	DRS STDCRMS
Class: Context:	header PROCESS
Туре:	double
Value Format:	%f
Comment Format: Description:	[arcsec] RMS of the WCS fit The RMS of the WCS fit
Parameter Name:	DRS NUMBRMS
Context:	PROCESS
Type: Value Format: Unit:	integer %d
Comment Format: Description:	no. of stars in WCS fit Number of stars in the WCS fit
Parameter Name: Class:	DRS WCSRAOFF header
Context:	PROCESS
Type: Value Format:	double %f
Unit:	arcsec
Comment Format:	[arcsec] diff in RA after proc.
Description:	of the image is calculated both before and after the plate solution is found. This is the difference in the RA (in arcseconds).

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	114 of 124

Class: Context: Type: Value Format: Unit: Comment Format: Description:

Parameter Name: DRS WCSDECOFF header PROCESS double %f arcsec [arcsec] diff in DEC after proc. The equatorial coordinates of the central pixel of the image is calculated both before and after the plate solution is found. This is the difference in the DEC (in arcseconds).

12 Appendix: Raw FITS Header

SIMPLE =			
	Т	/	Standard FITS (NOST-100-2.0)
NAXIS =	0	/	number of axes of data array
BITPIX =	8	/	number of bits per pixel value
EXTEND =	Т	/	FITS file extension may be present
RA =	123.123457	/	00:00:00.123 RA of telescope
DEC =	-12.123457	/	-00:00:00.12 Dec of telescope
RADECSYS=	'ICRS '	/	Name of celestial reference frame
EQUINOX =	2000.0	/	Equinox of celestial reference frame.
ORIGIN =	'ESO '	/	European Southern Observatory
TELESCOP=	'ESO-VISTA'	/	ESO <tel></tel>
INSTRUME=	'VIRCAM '	/	Instrument used
OBJECT =	'Sirius '	/	Target description
IMAGETYP=	'OBJECT '	/	Exposure type
AIRMASS =	1.12346	/	Averaged airmass
DATE =	'2004-12-13T12:31:46	. 0	00' / Date this file was written
DATE-OBS=	'2004-12-25T09:00:00	. 1	23' / UTC date at start of exposure.
UTC =	86399.123	/	00:00:00.123 UTC s at start since midnight
REQTIME =	5.000	/	Requested integration time
EXPTIME =	5.123	/	Actual integration time
LST =	80000.123	/	00:00:00.123 LST seconds since midnight
MJD-OBS =	54321.12345678	/	Modified Julian Date at start
OBSERVER=	'SERVICE '	/	Name of observer
PI-COI =	'J Lewis '	/	Name(s) of proposer(s)
COMMENT Ge	eneral comment		
HISTORY H	istorical Fact		
ESO-LOG			
	1 T T D d N T m_{2} 1 E L m_{1}		Omiginal File Name
ORIGFILE=	VIRCAM_IMa.I.IILS	/	Original File Name
ARCFILE =	'VIRCAM_IMA.I.IIUS' 'VIRCAM.2006-03-05T0'	7:	25:0.000.fits / Archive File name
ARCFILE = CHECKSUM=	'VIRCAM_1ma.1.1115' 'VIRCAM.2006-03-05T0' 'Pd3jPc3hPc3h'	7:: /	25:0.000.fits / Archive File name ASCII 1s-complement checksum
ARCFILE = CHECKSUM= RECIPE =	'VIRCAM_IMA.I.IIUS 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK'	7:: / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used
ARCFILE = CHECKSUM= RECIPE = OFFSTNUM=	'VIRCAM_IMA.I.IIIS' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234	/ 7:: / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence
ORIGFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM =	'VIRCAM_IMA.I.IIIS' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678	/ 7:3 / / / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number
ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM =	'VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666	/ 7:: / / / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members
ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM = GRPMEM =	'VIRCAM_IMA.1.1115' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T	/ / / / / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership
ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD=	'VIRCAM_IMA.1.1115' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F	7:: ///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation
ARCFILE = ARCFILE = CHECKSUM= CFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS=	'VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F	/ 7:: / / / / / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field
ARCFILE = ARCFILE = CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I=	'VIRCAM_IMA.1.1115' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 12345678 666 T F 6	7:: / / / / / / / /	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset
ARCFILE = ARCFILE = CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER =	'VIRCAM_IMA.I.IIIS' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 12345678 666 T F 6 2	7::////////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern
ARCFILE = ARCFILE = CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER = JITTENNUM=	'VIRCAM_IMA.I.IIIS' 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 12345678 666 T F 6 2 6 1236	7::////////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM = GRPNEM = STANDARD = STANDARD = NOFFSETS= OFFSET_I= NJITTER = JITTRNUM= JITTER_I=	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 2 6 1236 3	7::7::7::7::7::7::7::7::7::7::7::7::7::	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPMEM = STANDARD = NOFFSETS= OFFSET_I= JITTER = JITTER_I= JITTER_X=	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 2 6 1236 3 3.330	7:: ///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPMEM = STANDARD = NOFFSETS= OFFSET_I= NJITTER = JITTRNUM= JITTER_I= JITTER_Y=	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3 jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000	7://///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER JITTER_I= JITTER_Y= NUSTEP =	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4	7:::///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern Number of positions in microstep pattern
ARCFILE = ARCFILE = CHECKSUM= CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER_I= JITTER_I= JITTER_X= JITTER_Y= NUSTEP = USTEPNUM=	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237		25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ
ARCFILE = ARCFILE = CHECKSUM= CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER = JITTER_I= JITTER_X= JITTER_X= USTEPNUM= USTEPNUM= USTEP_I =	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237 1		25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern
ARCFILE = ARCFILE = CHECKSUM= CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER = JITTER_I= JITTER_X= JITTER_Y= NUSTEP = USTEPNUM= USTEP_I = USTEP_X =	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237 1 1.123		25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern X offset in microstep pattern X offset in microstep pattern
ARCFILE = ARCFILE = CHECKSUM= CHECKSUM= OFFSTNUM= OBSNUM = GRPNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER = JITTER_I= JITTER_Y= NUSTEP = USTEPNUM= USTEP_X = USTEP_Y =	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 1236 3 3.330 0.000 4 1237 1.123 1.123		25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern X offset in microstep pattern X offset in microstep pattern Y offset in microstep pattern Y offset in microstep pattern
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM = GRPNEM = STANDARD = STANDARD = NOFFSETS= OFFSET_I= NJITTER_I= JITTER_Y= NUSTEP_I = USTEP_Y = HIERARCH I	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237 1 1.123 1.123 250 DPR DID =	7://///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern X offset in microstep pattern X offset in microstep pattern X offset in microstep pattern Serial number of microstep pattern X offset in microstep pattern X offset in microstep pattern Y offset in microstep pattern SO-VLT-DIC.DPR-1.8' / DPR Dictionary
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPNUM = GRPNEM = STANDARD= NOFFSETS= OFFSET_I= NJITTER = JITTER_Y= JITTER_Y= USTEPNUM= USTEP_I = USTEP_Y = HIERARCH F HIERARCH F	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237 1 1.123 ESO DPR DID = ESO DPR CATG =	7://///////////////////////////////////	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern Y offset in microstep pattern X offset in microstep pattern X offset in microstep pattern Seco-VLT-DIC.DPR-1.8' / DPR Dictionary SCIENCE ' / Observation ca
ARCFILE = ARCFILE = CHECKSUM= RECIPE = OFFSTNUM= OBSNUM = GRPMEM = STANDARD= NOFFSETS= OFFSET_I= JITTER_I= JITTER_I= JITTER_Y= NUSTEP_I = USTEP_X = USTEP_Y = HIERARCH H HIERARCH H	VIRCAM_IMA.1.1115 'VIRCAM.2006-03-05TO' 'Pd3jPc3hPc3h' 'QUICK_LOOK' 1234 12345678 666 T F 6 1236 3 3.330 0.000 4 1237 1.123 ESO DPR DID = ESO DPR CATG = ESO DPR TYPE =	7	25:0.000.fits ' / Archive File name ASCII 1s-complement checksum Data-reduction recipe to be used Value of first OBSNUM in current tile sequence Observation Number Group number applied to all members Group membership Standard-star observation Number of offset positions in a field Serial Number of offset Number of positions in a tel jitter pattern Value of first OBSNUM in current jitter sequenc Serial number of this tel jitter pattern X offset in jitter pattern Y offset in jitter pattern Number of positions in microstep pattern Value of first OBSNUM in current microstep sequ Serial number of microstep pattern X offset in microstep pattern X offset in microstep pattern Science ' / Observation ca OBJECT ' / Observation ty

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	115 of 124

HIERARCH	ESO	OBS	DID =	' F	ESO-VLT-DIC.OBS' / OBS Dictionary	
HIERARCH	ESO	OBS	ID =		666 / Observation block ID	
HIERARCH	ESO	OBS	NAME =	' C	deep-tile ' / OB name	
HIERARCH	ESO	OBS	GRP =	' Z	ABCD / / linked blocks	
HTERARCH	ESO	OBS	OBSERVER =	١F	Bunclark ! / Observer N	Iam
UTEDADCU	ECO	OPC	DI COT ID -	-	162 / ESO intornal DI-COI ID	
HIERARCH	E30	065	PI-COI ID -		102 / ESO INCEINAL PI-COL ID	
HIERARCH	LSO	OBS	PI-COI NAME =	. 1	Lewis / PI-COI nam	le .
HIERARCH	ESO	OBS	PROG ID =	' 6	68.A-0281(A) ' / ESO program identifica	tı
HIERARCH	ESO	OBS	TPLNO =		2 / Template number within OB	
HIERARCH	ESO	OBS	TARG NAME =	' 2	South Pole ' / OB target	na
HIERARCH	ESO	OBS	START =	12	2006-03-05T07:20:00.123' / OB start time	
HTERARCH	ESO	OBS	EXECTIME =		0 / Expected execution time	
UTEDVDCU	ECO	TOT	DRECEO -	1 1	WIRCAM ima oba pow gog! / Soguenger agript	
UTEDADQU	100				2006 02 0Em07:20:00 1221 / EDI start time	
HIERARCH	ESO	ТЪГ	START =	' 4	2006-03-0510/:20:00.123' / TPL start time	
HIERARCH	ESO	TPL	DID =	' E	ESO-VLT-DIC.TPL-1.9 ' / Data diction	lar
HIERARCH	ESO	TPL	ID =	7 '	VIRCAM_img_obs_paw	'
HIERARCH	ESO	TPL	NAME =	7 '	VIRCAM Jittered pawprint sequence	'
HIERARCH	ESO	TPL	NEXP =		6 / Number of exposures within te	mp
HIFRARCH	FSO	трт.	FYDNO =		2 / Exposure number within templa	τρ
ITEDADOI	EDO		VEDCION -	1.0	(#) (Powigion: 1 E CL / Morgion of the templa	+ 0
HIERARCH	ESU ESO	TPL	VERSION =	. ((#) SREVISION I.5 S' / VERSION OF the tempta	lle
HIERARCH	ESO	ЪĘГ	FOCU LEN	-	= 4.120 / Focal length (m)	
HIERARCH	ESO	TEL	FOCU SCALE	=	= 24.000 / Focal scale (arcsec/mm)	
HIERARCH	ESO	TEL	FOCU VALUE	=	= 12345.120 / M2 setting (mm)	
HIERARCH	ESO	TEL	PARANG END	-	= 45.000 / Parallactic angle at end (deg	r)
HTERARCH	ESO	TEL.	PARANG START	-	= 47 000 / Parallactic angle at start (d	lea
UTEDADOU	200	יישיי ישיי	ATOM END	_	- 1 001 / Airmaga at and	-3
HIERARCH	ESU ESO		AIRM END	-		
HIERARCH	ESO	J.E.L	AIRM START	-	= 1.002 / Airmass at start	
HIERARCH	ESO	TEL	TRAK STATUS	=	= 'ON ' / Tracking status	
HIERARCH	ESO	TEL	TRAK RATEA	=	= 0.000000 / Tracking rate in RA (arcsec/s	ec
HIERARCH	ESO	TEL	TRAK RATED	-	= 0.000000 / Tracking rate in DEC (arcsec/	se
HTERARCH	ESO	TEL.	DOME STATUS	-	= 'FULLY-OPEN' / Dome status	
UTEDVDCU	ECO		CUITD STATUS		= ION / Statug of autoguider	
HIERARCH	E30	ADA	GUID SIAIUS	-	- ON / Status Of autoguider	
HIERARCH	ESO	ADA	GUID RA	-	= 180.000000 / 00:00:00.123 Guide star RA J2	00
HIERARCH	ESO	ADA	GUID DEC	=	= -45.00000 / %DEGREE Guide star DEC J2000	
HIERARCH	ESO	ADA	POSANG	=	= 33.00000 / Position angle at start	
HIERARCH	ESO	מחמ				lea
		ADA	ABSROT START		= 2.00000 / Abs rot angle at exp start (d	
HIERARCH	ESO	TEL	ID	-	= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi	on
HIERARCH	ESO ESO	TEL TEL	ID	=	= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC TCS-1 33 ' / Data dict	on io
HIERARCH HIERARCH	ESO ESO	TEL TEL	ABSROT START ID DID	=	= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict	on io
HIERARCH HIERARCH HIERARCH	ESO ESO ESO	TEL TEL TEL	ABSROT START ID DID DATE	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO	TEL TEL TEL ADA	ABSROT START ID DID DATE ABSROT END	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO	TEL TEL TEL ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = -75.987654 / Dec of WFS star 1</pre>	ion io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .12.123457 / RA of WFS star 1 = .12.123457 / RA of WFS star 2</pre>	.io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WES2 DEC	=	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 2</pre>	.io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC	= = = = = = = = = = = = = = = = = = = =	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 2</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT	= = = = = = = = = = = = = = = = = = = =	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 2</pre>	on io
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 2 = .80.000 / Alt angle at start (deg) = .10.000 / Az angle at start (deg) S=0,W</pre>	.on .io ()
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = .12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 2 = .80.000 / Alt angle at start (deg) = 10.000 / Az angle at start (deg) S=0,W = .2335 / Elevation above sea level (m)</pre>	() ()
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 1 = .29.2543 / Tel geo latitute (+=North) (deg) = .29.2543 / Tel geo latitute (+=North) (deg)</pre>	ion io () I=9
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 1 = .29.243 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d) </pre>	I=9
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON ODEP		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = -75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = -75.987654 / Dec of WFS star 2 = 80.000 / Alt angle at start (deg) = 10.000 / Az angle at start (deg) S=0,W = 2335 / Elevation above sea level (m) = -29.2543 / Tel geo latitute (+=North) (d = -70.7346 / Tel geo longitude (+=East) (d = 'Sone Operador</pre>	vio () () () () () () () () () () () () ()
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER DEC		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = -75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = -75.987654 / Dec of WFS star 2 = -75.987654 / Dec of WFS star 2 = 80.000 / Alt angle at start (deg) = 10.000 / Az angle at start (deg) S=0,W = 2335 / Elevation above sea level (m) = -29.2543 / Tel geo latitute (+=North) (d = -70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope</pre>	vio vio vio vio vio vio vio vio vio
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 2 = .0000 / Alt angle at start (deg) = 10.000 / Az angle at start (deg) S=0,W = .235 / Elevation above sea level (m) = .29.2543 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope = 'CA ' / Telescope focus station ID</pre>	J=9 leg e O
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 1 = .70.7346 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope = 'CA ' / Telescope focus station ID = .8.12 / M1 superficial temperature</pre>	I=9 leg leg
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA		<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = -75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = -75.987654 / Dec of WFS star 2 = -75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 1 = .75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 1 = .70.7986 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope = 'CA ' / Telescope focus station ID = .8.12 / MI superficial temperature = .10.00000 / 00:00:00.123 RA (J2000) (deg)</pre>	I=9 leg leg
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA	= = = = = = = = = = = = = = = = = = =	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = -75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = -75.987654 / Dec of WFS star 2 = .0000 / Alt angle at start (deg) = 10.000 / Az angle at start (deg) S=0,W = 2335 / Elevation above sea level (m) = .29.2543 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope = 'CA ' / Telescope focus station ID = 8.12 / M1 superficial temperature = 0.00000 / 00:00:00.123 RA (J2000) (deg) = 0.50 / Observatory Seeing queried fr</pre>	on io 1) H=9 leg leg 2 0
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 80.000 / Alt angle at start (deg) 10.000 / Az angle at start (deg) S=0,W 2335 / Elevation above sea level (m) -29.2543 / Tel geo latitute (+=North) (d -70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID 8.12 / MI superficial temperature 10.00000 / 00:00:00.123 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr 0.70 / Observatory Seeing queried fr</pre>	on io r) f=9 leg leg : 0
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END	= = = = = = = = = = = = = = = = = = =	<pre>= 2.00000 / Abs rot angle at exp start (d = 'v 3.45 ' / TCS versi = 'ESO-VLT-DIC.TCS-1.33 ' / Data dict = '2006-05-03' / TCS installation date = 3.00000 / Abs rot angle at exp end (deg = 'posit' / sign of probe position = 12.123457 / RA of WFS star 1 = .75.987654 / Dec of WFS star 1 = 12.123457 / RA of WFS star 2 = .75.987654 / Dec of WFS star 1 = .29.243 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d = 'Senor Operador ' / Telescope = 'CA ' / Telescope focus station ID = 8.12 / M1 superficial temperature = 10.000000 / 00:00:00.123 RA (J2000) (deg) = 0.50 / Observatory Seeing queried fr = .70.70 / Observatory seeing queried fr </pre>	() () () () () () () () () () () () () (
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END AMBI TEMP	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45</pre>	nom nom nom nom nom nom nom nom nom
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 80.000 / Alt angle at start (deg) 10.000 / Az angle at start (deg) S=0,W 2335 / Elevation above sea level (m) -29.2543 / Tel geo latitute (+=North) (d -70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID 8.12 / M1 superficial temperature 10.00000 / 00:00:00.123 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr 4.20 / Observatory ambient temperature 5 / Observatory ambient relative</pre>	() () () () () () () () () () () () () (
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END AMBI RHUM AMBI RHUM AMBI WINDDIR	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 80.000 / Alt angle at start (deg) 10.000 / Az angle at start (deg) S=0,W 2335 / Elevation above sea level (m) -29.2543 / Tel geo latitute (+=North) (d -70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID 8.12 / MI superficial temperature 10.00000 / 00:00:01.23 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr 4.20 / Observatory ambient temperature 340 / Observatory ambient relative</pre>	n io n io n) H=9 leg leg leg eg eg eg eg eg eg eg eg eg eg eg eg e
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI TEMP AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDSP	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 -75.987654 / Dec of WFS star 2 = .75.987654 / Dec of WFS star 1 = .29.243 / Tel geo latitute (+=North) (d = .70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID = 8.12 / M1 superficial temperature = 10.000000 / 00:00:123 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr = .70.70 / Observatory ambient temperature = .340 / Observatory ambient wind dire = .15.00 / Observatory ambient wind dire</pre>	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM AMBI RHUM AMBI WINDDIR AMBI WINDSP MOON DEC	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45</pre>	I=9 leg leg e 0 rom rom rre hu cct
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM AMBI RHUM AMBI WINDDIR AMBI WINDSP MOON DEC ENCL MOONSCE	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'v 3.45</pre>	I=9 legged of the second secon
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM END AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM AMBI WINDDIR AMBI WINDSP MOON DEC ENCL MOONSCR	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d</pre>	() () () () () () () () () () () () () (
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI TEMP AMBI RHUM AMBI WINDDIR AMBI WINDDR AMBI WINDSP MOON DEC ENCL WINDSCR	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45</pre>	(leg leg com
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI RHUM AMBI RHUM AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL WINDSCR1 ENCL WINDSCR2	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45</pre>	I=9 leg leg e 0 rom com cre hu cct
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL WINDSCR1 ENCL WINDSCR2 ENCL VENT1 ST	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'v 3.45</pre>	I=9 legged of the second secon
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI TEMP AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDDR MOON DEC ENCL WINDSCR1 ENCL VENT2 ST ENCL VENT2 ST	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d</pre>	() () () () () () () () () () () () () (
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	ADA TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL MONSCR ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d</pre>	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI FWHM STA AMBI WINDDIR AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL MOONSCR ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d</pre>	I=9 leggle 0 rom rom rre hu cct
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI FWHM END AMBI TEMP AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL MOONSCR ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT M2 LOOP1 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'v 3.45</pre>	I=9 legged are normer hut the hut hut the hut the hut the hut the hut
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL ADA ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI WINDDIR AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT M2 LOOP2 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'v 3.45</pre>	read something of the second s
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI FWHM STA AMBI FWHM END AMBI FWHM END AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDDR MOON DEC ENCL WINDSCR1 ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT M2 LOOP3 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d</pre>	() () () () () () () () () () () () () (
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	ADA TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI FWHM END AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL WONSCR ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT M2 LOOP3 STAT M2 LOOP4 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 80.000 / Alt angle at start (deg) 10.000 / Az angle at start (deg) S=0,W 2335 / Elevation above sea level (m) -29.2543 / Tel geo latitute (+=North) (d -70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID 8.12 / Ml superficial temperature 10.000000 / 00:00:00.123 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr 0.70 / Observatory ambient temperature 340 / Observatory ambient mind spee 15.00 / Observatory ambient wind spee 20.00000 / WEGREE DEC (J2000) (deg) EP= 1 / Moonscreen positions step TATE= 'OPEN ' / Louvre state TATE= 'UP ' / up/down slide state = 'SHUT ' / Vent 1 door state = 'CLOSED ' / Focus-loop switch state = 'CLOSED ' / Telescop switch state = 'CLOSED ' / Tilt-loop switch state = 'CLOSED ' / Tilt-loop switch state = 'CLOSED ' / Astigmatic-loop switch state = 'CLOSED ' / Astigmatic-loop switch state</pre>	I=9 legge 0 rom rom rre hu cct
HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	TEL TEL TEL ADA ADA ADA ADA ADA ADA ADA TEL TEL TEL TEL TEL TEL TEL TEL TEL TEL	ABSROT START ID DID DATE ABSROT END ABSROT PPOS WFS1 RA WFS1 DEC WFS2 RA WFS2 DEC ALT AZ GEOELEV GEOLAT GEOLON OPER FOCU ID TH M1 TEMP MOON RA AMBI FWHM STA AMBI RHUM AMBI WINDDIR AMBI WINDDIR AMBI WINDDIR AMBI WINDSP MOON DEC ENCL WINDSCR1 ENCL VENT1 ST ENCL VENT3 ST M2 LOOP1 STAT M2 LOOP4 STAT M2 LOOP4 STAT M2 LOOP5 STAT	= = = = = = = = = = = = = = = = = = =	<pre>2.00000 / Abs rot angle at exp start (d 'V 3.45 ' / TCS versi 'ESO-VLT-DIC.TCS-1.33 ' / Data dict '2006-05-03' / TCS installation date 3.00000 / Abs rot angle at exp end (deg 'posit' / sign of probe position 12.123457 / RA of WFS star 1 -75.987654 / Dec of WFS star 1 12.123457 / RA of WFS star 2 -75.987654 / Dec of WFS star 2 80.000 / Alt angle at start (deg) 10.000 / Az angle at start (deg) S=0,W 2335 / Elevation above sea level (m) -29.2543 / Tel geo latitute (+=North) (d -70.7346 / Tel geo longitude (+=East) (d 'Senor Operador ' / Telescope 'CA ' / Telescope focus station ID 8.12 / M1 superficial temperature 10.000000 / 00:00:00.123 RA (J2000) (deg) 0.50 / Observatory Seeing queried fr 4.20 / Observatory Seeing queried fr 4.20 / Observatory ambient temperature 5 / Observatory ambient temperature 340 / Observatory ambient wind size 20.00000 / %DEGREE DEC (J2000) (deg) EP= 1 / Moonscreen positions step TATE= 'OPEN ' / Louvre state TATE= 'UP ' / up/down slide state E 'SHUT ' / Vent 1 door state E 'HALF ' / Vent 2 door state = 'CLOSED ' / Focus-loop switch state 'CLOSED ' / Tilt-loop switch state = 'CLOSED ' / Tilt-loop switch state = 'CLOSED ' / Trefoil-loop switch state = 'CLOSED ' / Trefoil-loop switch state</pre>	I=9 leg leg or

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	116 of 124

HIERARCH	ESO	TEL	M2 CENY = 1.520000 / Y-Centre reading 2
HIERARCH	ESO	TEL	M2 TILTX = 1.530000 / X-tilt reading 3
HIERARCH	ESO	TEL	M2 TILTY = 1.540000 / Y-tilt reading 4
HIERARCH	ESO	TEL	M1 ACTUATORFAILED = 1 / Number of failed actuator
HIERARCH	ESO	TEL	ENCL FFLAMPI ID= '123 ' / Dim tungsten lamp pair
HIERARCH	ESO	TEL	ENCL FFLAMPI NAME= 'VIS_DOM_DIM' / Dim tungsten lamp pair
HIERARCH	ESU ESO	TEL	ENCL FFLAMPI STALE OFF / ON/OFF State of flat lamp i
HIERARCH	E20	TEL TEL	ENCL FFLAMP2 ID- 254 / Bright tungsten lamp pair
HIERARCH	ESO	TEL	ENCL FFLAMP2 NAME VIS_DOM_DRIGHT / Bright congsten lamp part
HIERARCH	ESO	TEL	ENCL FFLAMP3 ID= '345 ' / Halogen lamp pair
HIERARCH	ESO	TEL	ENCL FFLAMP3 NAME= 'VIS DOM HALOGEN' / Dim tungsten lamp pair
HIERARCH	ESO	TEL	ENCL FFLAMP3 STATE= 'OFF ' / ON/OFF state of flat lamp 3
HIERARCH	ESO	INS	THERMAL ENABLE= T / If T, enable thermal control lo
HIERARCH	ESO	INS	THERMAL DET TARGET= 130.00 / Detector target temperature
HIERARCH	ESO	INS	THERMAL WIN DELTA= 0.0 / Window target temp wrt ambien
HIERARCH	ESO	INS	THERMAL TUB DELTA= 0.0 / Tube target temp wrt ambient
HIERARCH	ESO	INS	ID = 'VIRCAM ' / Instrument ID
HIERARCH	ESO	INS	DID = 'ESO-VLT-DIC.VIRCAM_ICS ' / Data dictionar
HIERARCH	ESO	INS	OPER = ' ' / Instrument ope
HIERARCH	ESU ESO	TNC	MODE - LIMACE / Instrument mode
HIERARCH	E20	TNG	PATH = 'UNKNOWN ' / Optical path
HIERARCH	ESO	TNS	FILT SWSIM = UNKNOWN / If T function software simulat
HIERARCH	ESO	TNS	FILT STOFF = 0 / Offset [steps] to be applied
HIERARCH	ESO	INS	FILT USESW = UNKNOWN / If T, in-position switch is use
HIERARCH	ESO	INS	FILT IDi = 'UNKNOWN ' / Filter unique id
HIERARCH	ESO	INS	FILT NAMEi = 'UNKNOWN ' / Filter name
HIERARCH	ESO	INS	FILT FOCUSi= 1.235 / Filter focus offset [m]
HIERARCH	ESO	INS	FILT DENSITYi= 1.2 / Filter optical density
HIERARCH	ESO	INS	FILT NO = 0 / Filter wheel position index
HIERARCH	ESO	INS	FILT DATE = 'UNKNOWN ' / Filter index time
HIERARCH	ESO	INS	FILT ERROR = 0 / Last filter wheel error [Enc]
HIERARCH	ESO	INS	HB DEVNAME = 'UNKNOWN ' / Name of the ICS device.
HIERARCH	ESO	INS	HB DEVDESC = 'UNKNOWN '/ Description of the ICS de
HIERARCH	ESO	INS	HB LCUID = U / ID OI the LCU managing the devi
HIERARCH	ESO ESO	TNG	HB SWSIM = UNKNOWN / II I, IUNCLION SOLUWARE SIMULAL
HIERARCH	ESO	TNS	HB PIN = $0 / 0$ utput pin
HIERARCH	ESO	INS	SENSORi SWSIM= / If T, function software simulat
HIERARCH	ESO	INS	LSMi SWSIM = UNKNOWN / If T, function software simulat
HIERARCH	ESO	INS	LSMi OK = UNKNOWN / If T, controller was operationa
HIERARCH	ESO	INS	LSCi SWSIM = UNKNOWN / If T, function software simulat
HIERARCH	ESO	INS	LSCi OK = UNKNOWN / If T, controller was operationa
HIERARCH	ESO	INS	LSCi SETPi = 1.23 / Set-point.
HIERARCH	ESO	INS	VACi SWSIM = UNKNOWN / If T, function software simulat
HIERARCH	ESO	INS	VACi OK = UNKNOWN / If T, controller was operationa
HIERARCH	ESO	INS	CCCi SWSIM = UNKNOWN / If T, function software simulat
HIERARCH	ESO	INS	CCCi OK = UNKNOWN / If T, controller was operationa
HIERARCH	ESO	INS	SENSI ID = 'UNKNOWN ' / Sensor type
HIERARCH	ESU ESO	TNC	SENSI NAME = 'UNKNOWN '/ Sensor halle
HIERARCH	E20	TNG	SENSI VAL - 1.235 / SENSI Value
HIERARCH	ESO	TNS	SENSI MIN = 1 235 / Minimum value
HIERARCH	ESO	INS	SENSI MAX = 1.235 / Maximum value
HIERARCH	ESO	INS	SENSI MEAN = 1.235 / Average value
HIERARCH	ESO	INS	SENSi RMS = 1.235 / RMS of samples over exposure
HIERARCH	ESO	INS	SENSi TMMEAN= 0.000 / Time weighted average
HIERARCH	ESO	INS	SENSi GRAD = 1.235 / Linear regression slope
HIERARCH	ESO	INS	SENSi LRCONST= 0.000 / Linear regression constant
HIERARCH	ESO	INS	SENSi LRRMS = 1.235 / Linear regression RMS
HIERARCH			GENGI DEEGOEE 0.000 / The same determinentian sector
	ESO	INS	SENSI DETCOEF= 0.000 / Lin. reg. determination coeff.
HIERARCH	ESO ESO	INS INS	SENSI DETCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITi = UNKNOWN / Sensor unit
HIERARCH	ESO ESO ESO	INS INS INS	SENSI DETCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITi = UNKNOWN / Sensor unit PRESi ID = 'UNKNOWN ' / Pressure sensor type.
HIERARCH HIERARCH HIERARCH	ESO ESO ESO	INS INS INS	SENSI DETCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITI = UNKNOWN / Sensor unit PRESI ID = 'UNKNOWN ' / Pressure sensor type. PRESI NAME = 'UNKNOWN ' / Pressure sensor name.
HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO	INS INS INS INS	SENSI DEFCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITi = UNKNOWN / Sensor unit PRESi ID = 'UNKNOWN ' / Pressure sensor type. PRESi NAME = 'UNKNOWN ' / Pressure sensor name. PRESi VAL = 1.235 / Pressure. DERSi MIN = 1.235 / Minimum pressure.
HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO	INS INS INS INS INS	SENSI DEFCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITi = UNKNOWN / Sensor unit PRESi ID = 'UNKNOWN ' / Pressure sensor type. PRESi NAME = 'UNKNOWN ' / Pressure sensor name. PRESi VAL = 1.235 / Pressure. PRESi MIN = 1.235 / Minimum pressure. DEFSi MAX = 1.235 / Maximum pressure.
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS	SENSI DEFCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITI = UNKNOWN / Sensor unit PRESI ID = 'UNKNOWN ' / Pressure sensor type. PRESI NAME = 'UNKNOWN ' / Pressure sensor name. PRESI VAL = 1.235 / Pressure. PRESI MIN = 1.235 / Maximum pressure. PRESI MAX = 1.235 / Maximum pressure. PRESI MEAN = 1.235 / Average pressure
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS	SENSI DEFCOEF=0.000/ Lin. reg. determination coeff.SENSI UNITi = UNKNOWN/ Sensor unitPRESi ID = 'UNKNOWN '/ Pressure sensor type.PRESi NAME = 'UNKNOWN '/ Pressure sensor name.PRESi VAL =1.235PRESi MIN =1.235PRESi MAX =1.235PRESi MEAN =1.235PRESi RMS =1.235PRESi RMS =1.235
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS	SENSI DEFCOEF=0.000/ Lin. reg. determination coeff.SENSI UNITi = UNKNOWN/ Sensor unitPRESi ID = 'UNKNOWN '/ Pressure sensor type.PRESi NAME = 'UNKNOWN '/ Pressure sensor name.PRESi VAL =1.235PRESi MIN =1.235PRESi MAX =1.235PRESi MEAN =1.235PRESi RMS =1.235PRESi RMS =1.235PRESi TMMEAN=0.000/ Time weighted average.
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS	SENSI DEFCOEF= 0.000 / Lin. reg. determination coeff. SENSI UNITI = UNKNOWN / Sensor unit PRESI ID = 'UNKNOWN ' / Pressure sensor type. PRESI NAME = 'UNKNOWN ' / Pressure sensor name. PRESI VAL = 1.235 / Pressure. PRESI MIN = 1.235 / Maximum pressure. PRESI MAX = 1.235 / Average pressure. PRESI RMS = 1.235 / RMS of samples over exposure. PRESI TMMEAN= 0.000 / Time weighted average. PRESI GRAD = 1.235 / Linear regression slope.

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow	Listury Design	Date:	2005-08-12
System		Page:	117 of 124

HIERARCH	ESO	INS	PRESi	LRRMS =		1.235	/	Linear regression RMS.
HIERARCH	ESO	INS	PRESi	DETCOEF	=	0.000	/	Lin. reg. determination coeff
HIERARCH	ESO	INS	PRESi	UNITi =	UNK	NOWN	/	Pressure unit.
HIERARCH	ESO	INS	SW1 II	D =		' UNKNOWN '	/	Switch ID
HIERARCH	ESO	INS	SW1 NA	AME =	'Fi	lter in-posit	i	on switch' / Switch name
HIERARCH	ESO	INS	SW1 ST	TATUS =		'CLOSED'	/	Switch status
HIERARCH	ESO	TNS	TEMP1	TD	=	י 101	'/	ID of sensor 1
UTEDVDCA	FGO	TMC	TEMD1	NAME	_	'Ambient temp	, 	rature! / Location of sensor 1
IIIERARCII	ESO	TNC		TANIE TAT	_		/	Temperature concer 1 reading
HIERARCH	E30	TNO		VAL	-	200.100	',	Minimum anglus
HIERARCH	ESO	INS	TEMPT	MIN	=	260.100	1	Minimum Value
HIERARCH	ESO	INS	TEMPT	MAX	=	260.100	/	Maximum value
HIERARCH	ESO	INS	TEMP1	MEAN	=	260.100	/	Average value
HIERARCH	ESO	INS	TEMP1	RMS	=	260.100	/	RMS of amples over exposure
HIERARCH	ESO	INS	TEMP1	TMMEAN	=	260.100	/	Time weighted average
HIERARCH	ESO	INS	TEMP1	GRAD	=	0.010	/	Linear regression slope
HIERARCH	ESO	INS	TEMP1	LRCONST	=	120.120	/	Linear regression constant
HIERARCH	ESO	INS	TEMP1	LRRMS	=	260.100	1	Linear regression RMS
HIERARCH	ESO	TNS	TEMP1	DETCOEF	=	260.100	1	Lin, reg. determination coeff
UTEDVDCA	FGO	TMC	тъмр1	UNITT	_	'KELVIN'	',	Temperature unit
HIERARCH	E30	TNO	TEMPT	UNII	-	VEDATN 1	',	The factors of
HIERARCH	ESO	INS	I EMP Z		=	TDZ	′	ID OI Sensor 2
HIERARCH	ESO	INS	J.EWb.5	NAME	=	'Cryostat win	ad	ow temperature' / Location of se
HIERARCH	ESO	INS	TEMP2	VAL	=	260.100	/	Temperature sensor 2 reading
HIERARCH	ESO	INS	TEMP2	MIN	=	260.100	/	Minimum value
HIERARCH	ESO	INS	TEMP2	MAX	=	260.100	/	Maximum value
HIERARCH	ESO	INS	TEMP2	MEAN	=	260.100	/	Average value
HIERARCH	ESO	INS	TEMP2	RMS	=	260.100	/	RMS of amples over exposure
HTERARCH	ESO	TNS	TEMP2	TMMEAN	=	260,100	1	Time weighted average
HIFRARCH	FSO	TNG	TEMD2	GRAD	_	0 010	',	Linear regression slope
UTEDADCU	EBC ECO	TNC		I DCONCT	_	120 120	',	Linear regregation gongtant
HIERARCH	E30	TNO	I EMP 2	LACONST	-	120.120	',	
HIERARCH	ESO	INS	J.EWb.5	LRRMS	=	260.100	/	Linear regression RMS
HIERARCH	ESO	INS	TEMP2	DETCOEF	=	260.100	/	Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP2	UNIT	=	'KELVIN'	/	Temperature unit
HIERARCH	ESO	INS	TEMP3	ID	=	'ID3 '	/	ID of sensor 3
HIERARCH	ESO	INS	TEMP3	NAME	=	'Cryostat tub	be	temperature' / Location of sens
HIERARCH	ESO	INS	TEMP3	VAL	=	260.100	/	Temperature sensor 3 reading
HIERARCH	ESO	INS	TEMP3	MIN	=	260.100	1	Minimum value
HIERARCH	ESO	TNS	TEMP3	MAX	=	260 100	1	Maximum value
UTEDVDCA	FGO	TMC	TEMD3	MEAN	_	260.100	',	Average value
UTEDADCU	EBC ECO	TNC		DMC	_	260.100	',	PMC of ampled over expedure
HIERARCH	E30	TNO		TIMATIAN	-	200.100	',	RMS OF amples over exposure
HIERARCH	ESO	INS	IEMP3	IMMEAN	=	260.100	',	lime weighted average
HIERARCH	ESO	INS	J.EWb 3	GRAD	=	0.010	/	Linear regression slope
HIERARCH	ESO	INS	TEMP3	LRCONST	=	120.120	/	Linear regression constant
HIERARCH	ESO	INS	TEMP3	LRRMS	=	260.100	/	Linear regression RMS
HIERARCH	ESO	INS	TEMP3	DETCOEF	=	260.100	/	Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP3	UNIT	=	'KELVIN'	/	Temperature unit
HIERARCH	ESO	INS	TEMP4	ID	=	'ID4 '	/	ID of sensor 4
HIERARCH	ESO	INS	TEMP4	NAME	=	'Liquid Nitro	a	en tank temperature' / Location
HIERARCH	ESO	INS	TEMP4	VAL	=	260.100	/	Temperature sensor 4 reading
UTEDVDCA	FGO	TMC	TEMD4	MIN	_	260,100	',	Minimum value
UTEDADCU	ESO ESO	TNC		MAY	_	260.100	',	Maximum value
HIERARCH	E30	TNO		MEAN	-	200.100	',	
HIERARCH	ESO	INS	IEMP4	MEAN	=	260.100	',	Average value
HIERARCH	ESO	INS	TEMP4	RMS	=	260.100	/	RMS of amples over exposure
HIERARCH	ESO	INS	TEMP4	TMMEAN	=	260.100	/	Time weighted average
HIERARCH	ESO	INS	TEMP4	GRAD	=	0.010	/	Linear regression slope
HIERARCH	ESO	INS	TEMP4	LRCONST	=	120.120	/	Linear regression constant
HIERARCH	ESO	INS	TEMP4	LRRMS	=	260.100	/	Linear regression RMS
HIERARCH	ESO	INS	TEMP4	DETCOEF	=	260.100	/	Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP4	UNIT	=	'KELVIN'	/	Temperature unit
HTERARCH	ESO	TNS	ТЕМР5	TD	=	'TD5 '	1	ID of sensor 5
UTEDVDCA	FGO	TMC	TEMDS	NAME	_	'Baffle tempe	'n	ature! / Logation of sensor 5
IIIERARCII	ESO	TNC		TANIE TAT	_		: _ c /	Temporature concer 5 moding
HIERARCH	ESU EGO	TNS	TEMPS	VAL	=	260.100	',	Minimum and an
HIERARCH	ESO	INS	TEMP5	MIN	=	260.100	1	Minimum Value
HIERARCH	ESO	INS	TEMP5	MAX	=	260.100	/	Maximum value
HIERARCH	ESO	INS	TEMP5	MEAN	=	260.100	/	Average value
HIERARCH	ESO	INS	TEMP5	RMS	=	260.100	/	RMS of amples over exposure
HIERARCH	ESO	INS	TEMP5	TMMEAN	=	260.100	/	Time weighted average
HIERARCH	ESO	INS	TEMP5	GRAD	=	0.010	/	Linear regression slope
HIERARCH	ESO	INS	TEMP5	LRCONST	=	120.120	/	Linear regression constant
HIERARCH	ESO	INS	TEMP5	LRRMS	=	260.100		Linear regression RMS
HIERARCH	ESO	TNS	TEMPS	DETCORF	=	260 100	1	Lin. reg. determination coeff
HIEBVDUN	EGU	TNC		IINITT	_	'KELVIN'	',	Temperature unit
UTEDVDQU	100	TMC	TEMDE		_		',	ID of sensor 6
III ERAKCH	ESO ECO	TNO	TENEO		=		1	TO OF SCHOOL O
птекаксн	5U	TNR	т гил р	NAME	=	Lens parrel	Ľθ	emperature' / Location of sensor

VISTA	Data Re	duction	Doc	:	VIS-SPE-IOA-20000-0010
Doto Flow	Library	Design	Issue	e:	1.2
Data Flow	Libiary	Design	Date	e:	2005-08-12
System			Page	e:	118 of 124
			U		
HIERARCH ESO INS TEMP	6 VAL =	= 260.3	100 /	Temperat	cure sensor 6 reading
HIERARCH ESO INS TEMP	6 MIN =	= 260.1	100 /	Minimum	value
HIERARCH ESO INS TEMP	6 MEAN =	= 260.	100 /	Average	value
HIERARCH ESO INS TEMP	6 RMS =	= 260.2	100 /	RMS of a	amples over exposure
HIERARCH ESO INS TEMP	6 TMMEAN :	= 260.1	100 /	Time wei	ghted average
HIERARCH ESO INS TEMP	6 GRAD =	= 0.0	JIO / 120 /	Linear r	regression slope
HIERARCH ESO INS TEMP	6 LRRMS =	= 260.1	100 /	Linear r	regression RMS
HIERARCH ESO INS TEMP	6 DETCOEF =	= 260.3	100 /	Lin. reg	. determination coeff
HIERARCH ESO INS TEMP	6 UNIT =	= 'KELVIN'	, /	Temperat	ure unit
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	7 NAME =	= 'Filter wl	neel s	shield te	emperature' / Location o
HIERARCH ESO INS TEMP	7 VAL =	= 260.2	100 /	Temperat	cure sensor 7 reading
HIERARCH ESO INS TEMP	7 MIN =	= 260.1	100 /	Minimum	value
HIERARCH ESO INS TEMP	7 MAX = 7 MFAN =	= 260 = 260.	100 /	Average	value
HIERARCH ESO INS TEMP	7 RMS =	= 260.2	100 /	RMS of a	amples over exposure
HIERARCH ESO INS TEMP	7 TMMEAN =	= 260.2	100 /	Time wei	ghted average
HIERARCH ESO INS TEMP	7 GRAD :	= 0.0	010 /	Linear r	regression slope
HIERARCH ESO INS TEMP	7 LRCONST =	= 120.	100 /	Linear r	regression constant
HIERARCH ESO INS TEMP	7 DETCOEF =	= 260.1	100 /	Lin. reg	g. determination coeff
HIERARCH ESO INS TEMP	7 UNIT =	= 'KELVIN'	/	Temperat	ure unit
HIERARCH ESO INS TEMP	8 ID =	= 'ID8 - IEilton ul	'/	ID of se	ensor 8
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	8 VAL =	= 260.	100 /	Temperat	ure sensor 8 reading
HIERARCH ESO INS TEMP	8 MIN =	= 260.2	100 /	Minimum	value
HIERARCH ESO INS TEMP	8 MAX =	= 260.2	100 /	Maximum	value
HIERARCH ESO INS TEMP	8 MEAN =	= 260.1 - 260.1	100 /	Average	value
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	8 TMMEAN =	= 260.1	100 /	Time wei	ghted average
HIERARCH ESO INS TEMP	8 GRAD =	= 0.0	010 /	Linear r	regression slope
HIERARCH ESO INS TEMP	8 LRCONST :	= 120.3	120 /	Linear r	regression constant
HIERARCH ESO INS TEMP	8 LRRMS =	= 260.	100 /	Linear r	regression RMS determination coeff
HIERARCH ESO INS TEMP	8 UNIT :	= 'KELVIN'	/	Temperat	cure unit
HIERARCH ESO INS TEMP	9 ID =	= 'ID9	' /	ID of se	ensor 9
HIERARCH ESO INS TEMP	9 NAME =	= 'Closed c	ycle c	ooler 1	1st stage' / Location o
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	9 MIN =	= 260.1	100 /	Minimum	value
HIERARCH ESO INS TEMP	9 MAX =	= 260.2	100 /	Maximum	value
HIERARCH ESO INS TEMP	9 MEAN =	= 260.2	100 /	Average	value
HIERARCH ESO INS TEMP	9 RMS = 9 TMMFAN =	= 260 = 260.	100 /	RMS Of a	amples over exposure
HIERARCH ESO INS TEMP	9 GRAD =	= 0.0	010 /	Linear 1	regression slope
HIERARCH ESO INS TEMP	9 LRCONST :	= 120.2	120 /	Linear r	regression constant
HIERARCH ESO INS TEMP	9 LRRMS =	= 260.1	100 /	Linear r	regression RMS
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	9 UNIT =	= 200 = 'KELVIN'	100 /	Temperat	cure unit
HIERARCH ESO INS TEMP	10 ID =	= 'ID10	' /	ID of se	ensor 10
HIERARCH ESO INS TEMP	10 NAME =	= 'Closed c	ycle c	ooler 1	2nd stage' / Location o
HIERARCH ESO INS TEMP	10 VAL =	= 260.	100 /	Minimum	value
HIERARCH ESO INS TEMP	10 MAX =	= 260.2	100 /	Maximum	value
HIERARCH ESO INS TEMP	10 MEAN =	= 260.3	100 /	Average	value
HIERARCH ESO INS TEMP	10 RMS =	= 260.1	100 /	RMS of a	amples over exposure
HIERARCH ESO INS TEMP	10 TMMEAN = 10 GRAD =	= 260.	100 / 010 /	Linear r	gnted average regression slope
HIERARCH ESO INS TEMP	10 LRCONST :	= 120.1	120 /	Linear 1	regression constant
HIERARCH ESO INS TEMP	10 LRRMS	= 260.3	100 /	Linear r	regression RMS
HIERARCH ESO INS TEMP	LU DETCOEF = 10 IINTT -	= 260.1 = 'KFT.VTN'	TOO \	Lin. reg	g. aetermination coeff
HIERARCH ESO INS TEMP	11 ID =	= 'ID11	' /	ID of se	ensor 11
HIERARCH ESO INS TEMP	11 NAME =	= 'Closed cy	ycle c	ooler 2	lst stage' / Location o
HIERARCH ESO INS TEMP	11 VAL =	= 260.1	100 /	Temperat	cure sensor 11 reading
HIERARCH ESO INS TEMP	11 MAX =	- 260. = 260.	100 /	Maximum	value
HIERARCH ESO INS TEMP	11 MEAN =	= 260.2	100 /	Average	value
HIERARCH ESO INS TEMP	11 RMS =	= 260.2	100 /	RMS of a	amples over exposure
HIERARCH ESO INS TEMP	II TMMEAN =	= 260.3	100 / 110 /	Time wei	gnted average
HIERARCH ESO INS TEMP	11 LRCONST :	= 120.2	120 /	Linear r	regression constant

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	119 of 124

HIERARCH	ESO	INS	TEMP11	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP11	DETCOEF	=	260.100 / Lin. req. determination coeff
HIERARCH	ESO	INS	TEMP11	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP12	ID	=	'ID12 ' / ID of sensor 12
HIERARCH	ESO	INS	TEMP12	NAME	=	'Closed cycle cooler 2 2nd stage' / Location o
HIERARCH	ESO	TNS	TEMP12	VAT.	=	260 100 / Temperature sensor 12 reading
HIFRARCH	FSO	TNG	TEMD12	MIN	_	260.100 / Minimum value
UTEDADCU	EBC ECO	TNC		MAY	_	260.100 / Maximum value
UTEDADOU	ESU ECO	TNO		MEAN	_	260.100 / Maximum value
HIERARCH	ESU EGO	TNO		MEAN	-	260.100 / Average value
HIERARCH	ESO	INS	IEMPIZ	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMPIZ	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP12	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP12	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP12	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP12	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP12	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP13	ID	=	'ID13 ' / ID of sensor 13
HIERARCH	ESO	INS	TEMP13	NAME	=	'Closed cycle cooler 3 1st stage' / Location o
HIERARCH	ESO	INS	TEMP13	VAL	=	260.100 / Temperature sensor 13 reading
HIERARCH	ESO	INS	TEMP13	MIN	=	260.100 / Minimum value
HIERARCH	ESO	TNS	TEMP13	MAX	=	260 100 / Maximum value
UTEDADCU	EBC ECO	TNC		MEAN	_	260.100 / Maximum Value
IIIERARCII	ESO	TNC		DMC	_	260.100 / Average value
HIERARCH	ESU EGO	TNO		RMS	-	260.100 / RMS OF amples over exposure
HIERARCH	ESO	INS	TEMP13	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP13	GRAD	=	U.UIU / Linear regression slope
HIERARCH	ESO	INS	TEMP13	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP13	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP13	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP13	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP14	ID	=	'ID14 ' / ID of sensor 14
HIERARCH	ESO	INS	TEMP14	NAME	=	'Closed cycle cooler 3 2nd stage' / Location o
HIERARCH	ESO	INS	TEMP14	VAL	=	260.100 / Temperature sensor 14 reading
HTERARCH	ESO	TNS	TEMP14	MTN	=	260.100 / Minimum value
HIFRARCH	FSO	TNS	TEMD14	MAX	_	260.100 / Maximum value
UTEDADCU	EBC ECO	TNC		MEAN	_	260.100 / Maximum Value
IIIERARCII	100	TNO	TEMP14	DMC	-	200.100 / Average value
HIERARCH	ESO	INS	IEMP14	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMP14	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP14	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP14	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP14	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP14	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP14	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP15	ID	=	'ID15 ' / ID of sensor 15
HIERARCH	ESO	INS	TEMP15	NAME	=	'Wavefront sensor PY CCD assembly' / Location
HIERARCH	ESO	INS	TEMP15	VAL	=	260.100 / Temperature sensor 15 reading
HIERARCH	ESO	INS	TEMP15	MIN	=	260.100 / Minimum value
HIERARCH	ESO	TNS	TEMP15	MAX	=	260 100 / Maximum value
HIEBVBCA	ESO	TNC	TEMD15	MEAN	=	260 100 / Average value
HIERARCH	E30	TNO	TEMPIS TEMPIS	MEAN	-	200.100 / Average value
HIERARCH	E20	TINS			-	200.100 / RMB OI amples over exposure
HIERARCH	ESO	INS	TEMP15	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP15	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP15	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP15	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP15	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP15	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP16	ID	=	'ID16 ' / ID of sensor 16
HIERARCH	ESO	INS	TEMP16	NAME	=	'Wavefront sensor NY CCD assembly' / Location
HIERARCH	ESO	INS	TEMP16	VAL	=	260.100 / Temperature sensor 16 reading
HIERARCH	ESO	INS	TEMP16	MIN	=	260.100 / Minimum value
UTEDVDCA	FGO	TNC	TEMD16	MAY	_	260.100 / Maximum value
HIEDVDUM	200 200	TNG		MEVN	_	260.100 / Maximum value
HIERARCH	E30	TNO	IEMP10	DMC	-	200.100 / Average value
HIERARCH	EDO ECO	TINS	TEMETO		-	260.100 / RMB OL AMPIES OVER exposure
HIERARCH	F20	TNR	TFWLT0	IMMEAN	=	200.100 / 11me weighted average
HIERARCH	ESO	INS	TEMP16	GRAD	=	U.UIU / Linear regression slope
HIERARCH	ESO	INS	TEMP16	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP16	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP16	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP16	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP17	ID	=	'ID17 ' / ID of sensor 17
HIERARCH	ESO	INS	TEMP17	NAME	=	'Science detector 1AB' / Location of sensor 17
HIERARCH	ESO	INS	TEMP17	VAL	=	260.100 / Temperature sensor 17 reading
HIERARCH	ESO	INS	TEMP17	MIN	=	260.100 / Minimum value
HIERARCH	ESO	INS	TEMP17	MAX	=	260.100 / Maximum value

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	120 of 124

HIERARCH	ESO	INS	TEMP17	MEAN	=	260.100 / Average value
HIERARCH	ESO	INS	TEMP17	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMP17	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP17	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP17	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP17	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP17	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP17	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP18	ID	=	'ID18 ' / ID of sensor 18
HIERARCH	ESO	INS	TEMP18	NAME	=	'Science detector 1CD' / Location of sensor 18
HIERARCH	ESO	INS	TEMP18	VAL	=	260.100 / Temperature sensor 18 reading
HIERARCH	ESO	INS	TEMP18	MIN	=	260.100 / Minimum value
HIERARCH	ESO	INS	TEMP18	MAX	=	260.100 / Maximum value
HIERARCH	ESO	INS	TEMP18	MEAN	=	260.100 / Average value
HIERARCH	ESO	INS	TEMP18	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMP18	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP18	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP18	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	TNS	TEMP18	LRRMS	=	260 100 / Linear regression RMS
HIERARCH	ESO	TNS	TEMP18	DETCOEF	=	260.100 / Lin reg determination coeff
HIFRARCH	ESO ESO	TNG	TEMD18	UNIT	_	'KELVIN' / Temperature unit
UTEDADCU	EBC ECO	TNC		TD	_	LID19 / (ID of sensor 19
UTEDADCU	ESO	TNG		NAME	_	'Science detector 2BA' / Location of sensor 19
UTEDADCU	E20	TNC		1024015 1775 T	_	260 100 / Tomporature ganger 10 reading
HIERARCH	ESO ECO	TNC		VAL	_	260.100 / Minimum value
HIERARCH	ESU EGO	TNO	IEMP19	MIN	-	260.100 / Minimum value
HIERARCH	ESO EGO	TNO	TEMP19	MAA	=	260.100 / Maximum value
HIERARCH	LSO	TNS	TEMP19	MEAN	=	260.100 / Average value
HIERARCH	ESO	INS	TEMP19	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMP19	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP19	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP19	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP19	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP19	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO	INS	TEMP19	UNIT	=	'KELVIN' / Temperature unit
HIERARCH	ESO	INS	TEMP20	ID	=	'ID20 ' / ID of sensor 20
HIERARCH	ESO	INS	TEMP20	NAME	=	'Science detector 2DC' / Location of sensor 20
HIERARCH	ESO	INS	TEMP20	VAL	=	260.100 / Temperature sensor 20 reading
HIERARCH	ESO	INS	TEMP20	MIN	=	260.100 / Minimum value
HIERARCH	ESO	INS	TEMP20	MAX	=	260.100 / Maximum value
HIERARCH	ESO	INS	TEMP20	MEAN	=	260.100 / Average value
HIERARCH	ESO	INS	TEMP20	RMS	=	260.100 / RMS of amples over exposure
HIERARCH	ESO	INS	TEMP20	TMMEAN	=	260.100 / Time weighted average
HIERARCH	ESO	INS	TEMP20	GRAD	=	0.010 / Linear regression slope
HIERARCH	ESO	INS	TEMP20	LRCONST	=	120.120 / Linear regression constant
HIERARCH	ESO	INS	TEMP20	LRRMS	=	260.100 / Linear regression RMS
HIERARCH	ESO	INS	TEMP20	DETCOEF	=	260.100 / Lin. reg. determination coeff
HIERARCH	ESO					'KELVIN' / Temperature unit
HIERARCH		INS	TEMP20	UNIT	=	
HIERARCH	ESO	INS INS	TEMP20 TEMP21	UNIT ID	=	'ID21 ' / ID of sensor 21
	ESO ESO	INS INS INS	TEMP20 TEMP21 TEMP21	UNIT ID NAME	= = =	'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21
HIERARCH	ESO ESO ESO	INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL	= = =	'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading
HIERARCH HIERARCH	ESO ESO ESO	INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN	= = = =	'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value
HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO	INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX	= = = =	<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value</pre>
HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO	INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN	= = = = =	<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value</pre>
HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRCMS		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression coeff</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression RMS</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAMF		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression constant 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAI.		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear RMS 270.100</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Temperature sensor 22 reading 260.100 / Minimum value</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAY		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Minimum value</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Average value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Temperature sensor 22 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Maximum value</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN GRAD LRCONST LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN EMS		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression 22 'Science detector 3CD' / Location of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Temperature sensor 22 reading 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / RMS of amples areas areas areas.</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression 22 'Science detector 3CD' / Location of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Temperature sensor 22 reading 260.100 / Maximum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / RMS of amples over exposure</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN CRAP CRAP		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression 22 'Science detector 3CD' / Location of sensor 22 260.100 / Temperature sensor 22 reading 260.100 / Maximum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression classes</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Minimum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression slope 120.120 / Linear regression constant</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRCONST LRCONST		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Minimum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear constant 26</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS UNIT UNIT NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF		<pre>'ID21 ' / ID of sensor 21 'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Maximum value 260.100 / Maximum value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression slope 120.120 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear RMS</pre>
HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH HIERARCH	ESO ESO ESO ESO ESO ESO ESO ESO ESO ESO	INS INS INS INS INS INS INS INS INS INS	TEMP20 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP21 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22 TEMP22	UNIT ID NAME VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST ID VAL MIN MAX MEAN RMS TMMEAN GRAD LRCONST LRRMS DETCOEF UNIT		<pre>'ID21 ' / ID of sensor 21 'Science detector 3AB' / Location of sensor 21 260.100 / Temperature sensor 21 reading 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / RMS of amples over exposure 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Lin. reg. determination coeff 'KELVIN' / Temperature unit 'ID22 ' / ID of sensor 22 'Science detector 3CD' / Location of sensor 22 260.100 / Minimum value 260.100 / Minimum value 260.100 / Maximum value 260.100 / Average value 260.100 / Average value 260.100 / Time weighted average 0.010 / Linear regression slope 120.120 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression Constant 260.100 / Linear regression RMS 260.100 / Linear regression RMS 260.100 / Linear regression Constant 260.100 / Line</pre>

	Data Daduation	Doc:	VIS-SPE-IOA-2000-0010			
V 15 I A		Issue:	1 2			
Data Flow	Library Design	Data:	2005-08-12			
System		Date.	121 of 124			
oystem		Page:	121 01 124			
עדדףם ארמי הפט באוס מהאט	כניתדי - תד 23		angor 23			
HIERARCH ESO INS TEMP	23 NAME = 'Science	detector 4BA'	/ Location of sensor 23			
HIERARCH ESO INS TEMP	23 VAL = 260	.100 / Temperat	ture sensor 23 reading			
HIERARCH ESO INS TEMP	23 MIN = 260 23 MAX = 260	100 / Minimum 100 / Maximum	value			
HIERARCH ESO INS TEMP	23 MEAN = 260	.100 / Average	value			
HIERARCH ESO INS TEMP	23 RMS = 260	.100 / RMS of a	amples over exposure			
HIERARCH ESO INS TEMP	23 TMMEAN = 260	.100 / Time we:	ighted average			
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	23 GRAD = 0 23 LRCONST = 120	.010 / Linear 1 .120 / Linear 1	regression slope			
HIERARCH ESO INS TEMP	23 LRRMS = 260	.100 / Linear	regression RMS			
HIERARCH ESO INS TEMP	23 DETCOEF = 260	.100 / Lin. reg	g. determination coeff			
HIERARCH ESO INS TEMP	23 UNIT = 'KELVIN' 24 to = 'TD24	/ Temperat	ture unit ensor 24			
HIERARCH ESO INS TEMP	24 NAME = 'Science	detector 4DC'	/ Location of sensor 24			
HIERARCH ESO INS TEMP	24 VAL = 260	.100 / Temperat	ture sensor 24 reading			
HIERARCH ESO INS TEMP	24 MIN = 260	.100 / Minimum	value			
HIERARCH ESO INS TEMP	24 MAX = 260 24 MFAN = 260	100 / Maximum	value			
HIERARCH ESO INS TEMP	24 RMS = 260	.100 / RMS of a	amples over exposure			
HIERARCH ESO INS TEMP	24 TMMEAN = 260	.100 / Time we:	ighted average			
HIERARCH ESO INS TEMP	24 GRAD = 0	.010 / Linear 1	regression slope			
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	24 LRCONSI = 120 24 LRRMS = 260	.120 / Linear 1 .100 / Linear 1	regression RMS			
HIERARCH ESO INS TEMP	24 DETCOEF = 260	.100 / Lin. reg	g. determination coeff			
HIERARCH ESO INS TEMP	24 UNIT = 'KELVIN'	/ Temperat	ture unit			
HIERARCH ESO INS TEMP	25 ID = 'ID25 25 NAME = 'EDA the	' / ID of se rmal plate' / I	ensor 25 Location of sensor 25			
HIERARCH ESO INS TEMP	25 VAL = 260	.100 / Temperat	ture sensor 25 reading			
HIERARCH ESO INS TEMP	25 MIN = 260	.100 / Minimum	value			
HIERARCH ESO INS TEMP	25 MAX = 260	.100 / Maximum	value			
HIERARCH ESO INS TEMP HIERARCH ESO INS TEMP	25 MEAN = 260 25 RMS = 260	.100 / Average .100 / RMS of a	value amples over exposure			
HIERARCH ESO INS TEMP	25 TMMEAN = 260	.100 / Time we:	ighted average			
HIERARCH ESO INS TEMP	25 GRAD = 0	.010 / Linear 1	regression slope			
HIERARCH ESO INS TEMP	25 LRCONST = 120	.120 / Linear 1	regression constant			
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	25 DETCOEF = 260	.100 / Linear 1 .100 / Lin. red	a. determination coeff			
HIERARCH ESO INS TEMP	25 UNIT = 'KELVIN'	/ Temperat	ture unit			
HIERARCH ESO INS TEMP	26 ID = 'ID26	' / ID of se	ensor 26			
HIERARCH ESO INS TEMP HIERARCH ESO INS TEMP	26 NAME = WFS plat $26 VAL = 260$	100 / Location	n of sensor 26 ture sensor 26 reading			
HIERARCH ESO INS TEMP	26 MIN = 260	.100 / Minimum	value			
HIERARCH ESO INS TEMP	26 MAX = 260	.100 / Maximum	value			
HIERARCH ESO INS TEMP	26 MEAN = 260	.100 / Average	value			
HIERARCH ESO INS TEMP	26 TMMEAN = 260	.100 / Time we:	ighted average			
HIERARCH ESO INS TEMP	26 GRAD = 0	.010 / Linear 1	regression slope			
HIERARCH ESO INS TEMP	26 LRCONST = 120	.120 / Linear 1	regression constant			
HIERARCH ESO INS IEMP HIERARCH ESO INS TEMP	26 DETCOEF = 260	.100 / Linear 1 .100 / Lin. red	a. determination coeff			
HIERARCH ESO INS TEMP	26 UNIT = 'KELVIN'	/ Temperat	ture unit			
HIERARCH ESO INS HOWFS DATE = '2006-03-05T01:02:03.123' / Time of new coefs						
LUU XTENSION= 'IMAGE ' / Extension first keyword						
NAXIS = 2 / number of axes of data array						
NAXIS1 = 2048 / Size of first axis						
NAXIS2 = 2048 / Size of second axis						
EXTNAME = 'WIN1.CHIP1.OUT1' / FITS extension name						
EXTVER = 1 / Detector index						
INHERIT = DET LIVE=	T / Extension T / This deter	inherits prima tor is alive	ary header			
RADECSYS= 'ICRS '	/ Name of ce	elestial refere	ence frame			
EQUINOX =	2000.0 / Equinox o:	celestial ret	ference frame.			
CTYPE1 = 'RAZPN'	/ Type of co	elestial axis i	1			
CIIPEZ = 'DECZPN' CRPIX1 =	/ Type of ce 6860.80 / Pixel coor	dinate of ref	∠ erence in axis 1			
CRPIX2 = -3507.20 / Pixel coordinate of reference in axis 2						
CRVAL1 = 270.00000000000 / RA of reference point						
CRVAL2 = -75.000 CD1 1 = -9 444444 = -	0000000000 / Dec of re: 05 / Transform	erence point	lement			
CD1_2 = -9.4444444E-05 / Transformation matrix element CD1_2 = 0.000000E+00 / Transformation matrix element						

Data Flow System Library Design Issue: 1.2 Date: 2005-08-12 Page: 122 of 124 CD2_1 = 0.000000E+00 // Transformation matrix element CD2_1 = 0.000000E+00 // Transformation matrix element CP2_1 = 1.00000E+00 // Unicar term in ZPN FV2_1 = 1.00000E+00 // Quadratic term in ZPN FV2_3 = 4.20000E+01 // cubic term in ZPN FV2_4 = 0.000000E+00 // fifth-order term in ZPN FV2_5 = 0.00000E+00 // forth-order term in ZPN FV2_5 = 0.00000E+00 // forth-order term in ZPN FV2_5 = 0.00000E+01 // cubic term in ZPN FV2_6 // Cubic term in ZPN	VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Data flow System Data y Design Date: 2005-08-12 Page: 122 of 124 CD2_1 = 0.000000E+00 / Transformation matrix element CD2_1 = 0.000000E+00 / Jinear term in ZPN PV2_1 = 1.00000E+00 / Jinear term in ZPN PV2_3 = 4.200000E+00 / forth-order term in ZPN PV2_4 = 0.000000E+00 / forth-order term in ZPN PV2_4 = 0.000000E+00 / forth-order term in ZPN PV2_4 = 0.000000E+00 / forth-order term in ZPN PV2_4 = 0.00000E+00 / forth-order term in ZPN PV2_4 = 0.00000E+00 / forth-order term in ZPN PV2_4 = 0.00000E+00 / forth-order term in ZPN PV2_5 = 0.00000E+00 / forth-order term in ZPN PV2_4 = 0.00000E+00 / forth-order term in ZPN PV2_5 = 0.0000E+00 / forth-order term in ZPN PV2_5 = 0.0000E+00 / forth-order term in ZPN PV2_5 = 0.0000E+00 / for Sub-Divs for R-0 HIERARCH ES0 DET NODEN NAME ' / DCS Detector Mode HIERARCH ES0 DET NACE ADCI HEADE 1		Library Decian	Issue:	1.2
System Page: 122 of 124 CD2_1 = 0.000000E+00 / Transformation matrix element CD2_2 = 0.44444Hz-05 / Transformation matrix element FV2_1 = 1.000000E+00 / linear term in ZPN FV2_2 = 0.000000E+00 / quadratic term in ZPN FV2_4 = 0.000000E+00 / forth-order term in ZPN FV2_4 = 0.000000E+00 / forth-order term in ZPN FV2_5 = 0.000000E+00 / forth-order term in ZPN FV2_5 = 0.000000E+00 / forth-order term in ZPN FV2_4 = 0.000000E+00 / forth-order term in ZPN FV2_5 = 0.000000E+00 / forth-order term in ZPN HIERARCH ESO DET MODE NAME = ' ' / DCS Detector Mode HIERARCH ESO DET NOBENAME = ' / ' / DCS Detector Mode HIERARCH ESO DET NORS NAME = ' / ' / DCS Detector Mode HIERARCH ESO DET NCORNS = 0 / Fead-Out Mode HIERARCH ESO DET INACE ADCI ENABLE= 1 / # fof Sub-lixe for ADC Board HIERARCH ESO DET INACE ADCI ENABLE= 1 / Header of ADC Board HIERARCH ESO DET INACE ADCI ENABLE= 1 / ADC Filter Adjuatment HIERARCH ESO DET NORSKIPE 0 / # of Sub-Integrations	Data Flow	Libiary Design	Date:	2005-08-12
CD2_1 = 0.00000E+00 / Transformation matrix element CD2_2 = 9.444444E-05 / Transformation matrix element FV2_1 = 1.000000E+00 / linear term in ZPN FV2_2 = 0.00000E+00 / quadratic term in ZPN FV2_3 = 4.200000E+01 / cubic term in ZPN FV2_4 = 0.00000E+00 / forth-order term in ZPN FV2_5 = 0.00000E+00 / forth-order term in ZPN HIERARCH ESO DET MODE NAME = ' ' / DCS Detector Mode HIERARCH ESO DET MODE NAME = ' ' / DCS Detector Mode HIERARCH ESO DET NCORSME = ' / DCS Detector Mode HIERARCH ESO DET NCORSME = 0 / Read-Out Mode HIERARCH ESO DET NCORSMETX = 1 / # of Sub-Divs for R-O HIERARCH ESO DET NCORSMETX = 1 / # of Sub-Divs for R-O HIERARCH ESO DET INCORSMETX = 1 / Read-Out Mode HIERARCH ESO DET IRACE ADCI NAME= 'VIRGO ' / Name for ADC Board HIERARCH ESO DET IRACE ADCI NAME= 'VIRGO ' / Read-Out Mode HIERARCH ESO DET IRACE ADCI NAME= 'VIRGO ' / Read-Out Mode HIERARCH ESO DET IRACE ADCI NAME= 'DDICOT ' / Read-Out Mode Name HIERARCH ESO DET IRACE ADCI FILTERi= 1 / ADC Filter Adjustment HIERARCH ESO DET INCORS NAME = 'DDICOT ' / Read-Out Mode Name HIERARCH ESO DET NORSS NAME = 'DDICOT ' / Read-Out Mode Name HIERARCH ESO DET NORSS NAME = 'DDICOT ' / Read-Speed Add HIERARCH ESO DET NOSKIP = 0 / # fo Non-Dest. Samples HIERARCH ESO DET NOSKIP = 0 / # of Non-Dest. Samples HIERARCH ESO DET NOSKIP = 0 / Read-Speed Add HIERARCH ESO DET NOSKIP = 0.0000 / Set Value High Clock HIERARCH ESO DET VOLTI CLKHINi= '3.3 ' / Name of High Clock HIERARCH ESO DET VOLTI CLKHINi= 0.0000 / Set Value High Clock HIERARCH ESO DET VOLTI CLKHINi= 0.0000 / Tel Value Low Clock HIERARCH ESO DET VOLTI CLKHINI= 0.0000 / Tel Value Low Clock HIERARCH ESO DET VOLTI CLKLOTI= 0.0000 / Set Value DC Voltage HIERARCH ESO DET VOLTI CLKLOTI= 0.0000 / Set Value DC Voltage HIERARCH ESO DET VOLTI CLKLOTI= 0.0000 / Set Value DC Voltage HIERARCH ESO DET CONTI DCM = 'FRED ' / Name of DC Voltage HIER	System		Page:	122 of 124
CD2_1= 0.000000E+00/ Transformation matrix elementCD2_2= 9.44444E-05/ Transformation matrix elementCD2_1= 1.000000E+00/ quadratic term in ZPNFV2_3= 4.200000E+00/ cubic term in ZPNFV2_4= 0.000000E+00/ forth-order term in ZPNFV2_5= 0.00000E+00/ forth-order term in ZPNFV2_5= 0.00000E+00/ forth-order term in ZPNFV2_4= 0.00000E+00/ forth-order term in ZPNFV2_5= 0.00000E+00/ More term in ZPNFV2_5= 0.0000E+00/ More term in ZPNFV2_5= 0.000E+00/ More term in ZPNFV2_5= 0.000E+00/ More term in ZPNFV2_6= 1.72600/ More term in ZPNFV2_6= 0.000E+00/ Read-Speed FactorHIERARCH ESO DET NC NSAMPEX= 0/ Read-Speed ActorHIERARCH ESO DET IRACE ADCI MAME= 'VIRGO '/ Name of ADC BoardHIERARCH ESO DET NOCRS= 0/ J Chiera AdjustmentHIERARCH ESO DET NOCRS NAME = 'DEIC '/ Read-Speed Actor	v		1 490.	
HIERARCH ESO DET CHOP CYCSKIP=0/ # of Chop Cycles to SkipHIERARCH ESO DET CHOP NCYCLES=0/ # of Chop CyclesHIERARCH ESO DET CHOP ST=/ Chopping On/OffHIERARCH ESO DET CHOP FREQ= 0.000000/ Chopping FrequencyHIERARCH ESO DET CHIP ID= 'VM301-S/N-022'/ Detector IDHIERARCH ESO DET CHIP NAME= 'VIGGO '/ Detector nameHIERARCH ESO DET CHIP NX=2048/ Pixels in XHIERARCH ESO DET CHIP PXSPACE=2.000e-05/ Pixel Spacing	System CD2_1 = 0.00000000000000000000000000000000000	0 / Transforma 5 / Transforma 0 / linear term 0 / quadratic 1 / cubic term 0 / forth-orde 0 / forth-orde 0 / fifth-orde 1T = 1.7726000 NAME = ' ' ' I NAME = ' ' ' SAMPPIX = 1 RS = 0 ED = 1 E ADCi NAME= 'VIRGO E ADCi HEADER= E ADCi FILTERi= E ADCi FILTERi= E ADCi DELAY= RS NAME = 'DblCor ' = 10 SKIP = 0 MPLES = 0 IP = 0 EDADD = 0 i CLKHINMi= '3.3 ' i CLKHITi= 0.0000 i CLKHITi= 0.0000 i CLKHITi= 0.0000 i CLKLOTI = 4.9000 i DCIMI = 'FRED ' i CLKLOI = 0.1000 i DCIMI = 'SIMULATION' TYPE = 'DIT ' 0.1234500 / Integratio CYCSKIP= 0 NCYCLES= 0 ST = FREQ = 0.000000 ID = 'VM301-S/N-0 NAME = 'VIRGO ' NX = 2048 PXSPACE= 2.000e-05	Date: Page: tion matrix el tion matrix el m in ZPN term in ZPN r term for r Sequence r Sequence	2005-08-12 122 of 124 Lement Lement Lement Lement Lement DIT ector Mode o-Divs for R-O mples/Pixel : Mode eed Factor : ADC Board : ADC
TILLARION LOS DEL VOLTE DELDE - 0.00000 / TEL VALAC 2 TOT DE	HIERARCH ESO DET VON HIERARCH ESO DET DID HIERARCH ESO DET DIT HIERARCH ESO DET DIT HIERARCH ESO DET EXP HIERARCH ESO DET EXP HIERARCH ESO DET WIN HIERARCH ESO DET WIN HIERARCH ESO DET WIN HIERARCH ESO DET WIN HIERARCH ESO DET WIN	NX = 2048 = ' ' = 0.000000 ELAY = 0.000 UTC = '2006-03-05T NAME = ' ' NY = 2048 STARTX = 1.000000 TYPE = 0	/ for Varian / # of Pix / Dictiona / Integrat / Pause Be 10:11:12' / Fi / Exposure / # of Pix / Lower Le / Lower Le / Win-Type	cels in X cels in X ary Name and Revision tion Time etween DITs tile Creation Time e Name cels in Y eft X Ref eft Y Ref

VISTA	Data Reduction	Doc:	VIS-SPE-IOA-20000-0010
Doto Flow	Library Design	Issue:	1.2
Data Flow		Date:	2005-08-12
System		Page:	123 of 124

0©0