
EUROPEAN SOUTHERN OBSERVATORY
Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral

Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

Common Pipeline Library
User Manual

VLT–MAN–ESO–19500–2720

Issue 1.0

Date 2003–12–15

Prepared: CPL Project Team 2003-12-15. .
Name Date Signature

Approved: M. Peron. .
Name Date Signature

Released: P. Quinn. .
Name Date Signature

This page was intentionally left blank

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 3 of 70

Change record

Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks

1.0 15/12/2003 All First version

This page was intentionally left blank

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 5 of 70

Contents

1 Introduction 7

1.1 The Common Pipeline Library . 7

1.2 Future work . 7

1.3 Acknowledgements . 8

1.4 Reference documents . 8

1.5 Abbreviations and acronyms . 9

2 Installation 10

2.1 Supported platforms . 10

2.2 Building the CPL from the source distribution . 10

2.2.1 Requirements . 10

2.2.2 Downloading the CPL source distribution . 11

2.2.3 Compiling the Common Pipeline Library . 11

3 Software development with the CPL 14

3.1 Getting started . 14

3.2 Using the Common Pipeline Library in your project . 14

3.3 Linking your application with the CPL . 15

3.4 Writing a simple Common Pipeline Library application . 16

3.5 How to implement a Pluggable Data Reduction Module . 17

3.6 Current library limitations . 22

4 CPL general design features 23

4.1 OO approach . 23

4.2 Portability . 23

4.3 FITS I/O . 24

4.4 The xmemorymemory model . 24

4.4.1 Advantages of using xmemory . 24

4.4.2 Using xmemory . 24

4.4.3 Documentation on xmemory . 25

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 6 of 70

4.5 Error handling . 25

4.6 Library stability . 25

4.7 Code conventions . 25

4.7.1 Objects . 25

4.7.2 Methods . 26

4.7.3 Functions . 26

4.8 Naming conventions . 26

5 The CPL components 27

5.1 Component libraries . 27

5.2 Core objects in libcplcore . 27

5.2.1 Images . 27

5.2.2 Tables . 35

5.2.3 Vectors . 43

5.2.4 1d Functions . 45

5.2.5 Matrices . 45

5.2.6 Messaging and logging . 48

5.2.7 Error handling . 50

5.3 Properties . 54

5.3.1 Property lists . 54

5.4 Standard data reduction algorithms in libcplbase . 56

5.5 The CPL high-level interfaces in libcplui . 56

5.5.1 Frames . 56

5.5.2 Frameset . 57

5.5.3 Parameters . 58

A Memory model description 60

B The PDRM source code 64

C Comment conventions 67

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 7 of 70

1 Introduction

1.1 The Common Pipeline Library

The Common Pipeline Library (CPL) consists of a set of C libraries, which have been developed to standardise
the way VLT instrument pipelines are built, to shorten their development cycle and to ease their maintenance.
The Common Pipeline Library was not designed as a general purpose image processing library, but rather to
address two primary requirements. The first of these was to provide an interface to the VLT pipeline runtime-
environment. The second was to provide a software kit of medium-level tools, which allows astronomical
data-reduction tasks to be built rapidly.

The Common Pipeline Library provides:

� many useful data types (property lists, images, tables, ...),

� string and file utilities,

� medium-level data access methods (a simple data abstraction layer),

� image and signal processing capabilities,

� standard implementations of commonly used data reduction tasks,

� support for dynamic loading of recipe modules, and,

� standardised application interfaces for pipeline recipes.

Despite the bias towards instrument pipeline development, the library core provides a variety of general-purpose
image and signal-processing functions. Thus, it also serves well as a basis for any generic data-handling pack-
age.

1.2 Future work

This first release of the Common Pipeline Library does not meet all the requirements for a data reduction library.
However it establishes support for an extended set of data objects and methods that represent a solid foundation
for further development of the CPL toward a fairly complete library.

Three major areas of growth are foreseen for the next release: further generalisation of basic data types, defini-
tion of a set of astronomy-oriented utility functions and implementation of high-level data reduction methods.

Among the possible generalisations of the CPL basic data types is the 3D extension of the CPL table component;
currently a table element can just be a scalar or a character string. The CPL table component implementation
will be extended to support numerical arrays and CPL images as column elements. More sophisticated methods
for signal processing will also be added to any CPL basic component as they will be needed in the development
of future pipelines.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 8 of 70

A set of astronomical utility functions will also be created, to support spherical coordinate transformations, date
and time conversions, precession, atmospheric extinction determination and other common operations in astron-
omy. It is considered especially desirable to support celestial WCS on CPL image frames, their determination
on the basis of identified stars, and any related application such as image alignment and resampling.

Finally, a standardisation of the most common calibration steps and removal of instrument signature would be
offered. Of course the data reduction system developer may freely define any specific procedure to support bias
subtraction, flat fielding, wavelength calibration, instrument response linearisation, cosmic ray removal, object
detection, bad pixel determination, etc., for any particular instrument. Yet, standard implementations of such
tasks will be made available in the CPL for the most common detectors used for the VLT.

1.3 Acknowledgements

In June 2001, N. Devillard and R. Palsa first proposed a common software library in order to ease and acceler-
ate the development efforts for the different VLT instrument pipelines. This software library, called Common
Pipeline Library (CPL), would essentially be built up from already existing code. In particular, the Eclipse
library (used for ISAAC and NACO pipelines) and concepts of the VIMOS data reduction software would be
the main pillars of the CPL software.

In September 2001, M. Peron formed a CPL project team, consisting of N. Devillard and Y. Jung (working
for ISAAC, NAOS/CONICA), together with R. Palsa and C. Izzo (working for VIMOS, FORS1/2), as well
as P. Ballester and C. Sabet from the VLTI pipeline project. K. Banse served as mediator and chairman. In
September 2002, N. Devillard left the CPL project and M. Kiesgen became a member of the team by the end
of that year. Finally, L. Lundin, A. Modigliani and D. J. McKay joined the CPL team in the course of the year
2003. A preliminary version of the CPL was released in May 2002. Building on this basic version, the first
official release of the CPL was made available to the public by ESO in December 2003.

1.4 Reference documents

�����
Data Flow for VLT instruments Requirement Specification VLT-SPE-ESO-19000-1618�����
DFS Pipeline & Quality Control – User Manual VLT-MAN-ESO-19500-1619��	��
ESO DICB – Data Interface Control Document GEN-SPE-ESO-00000-0794�
��
Common Pipeline Library Reference Manual�����
Recommended C Style and Coding Standards

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 9 of 70

1.5 Abbreviations and acronyms

CONICA COudé Near Infrared Camera Array
CPL Common Pipeline Library
DHS Data Handling Server
DFS Data Flow System
DO Data Organiser
DRS Data Reduction System
ESO European Southern Observatory
ESO–MIDAS ESO’s Munich Image Data Analysis System
FORS FOcal Reducer/low dispersion Spectrograph
FTP File Transfer Protocol
ISAAC Infrared Spectrometer And Array Camera
GNU GNU’s Not Unix!
LSS Long Slit Spectroscopy
MOS Multi Object Spectroscopy
NAOS Nasmyth Adaptive Optics System
PDRM Pluggable Data Reduction Module
RB Reduction Block
RBS Reduction Block Scheduler
SDK Software Development Kit
UT Unit Telescope
VIMOS VIsible Multi-Object Spectrograph
VLT Very Large Telescope
VLTI Very Large Telescope Interferometer

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 10 of 70

2 Installation

This chapter gives generic instructions on how to obtain, build and install the Common Pipeline Library. Even
if this chapter is kept as up-to-date as much as possible, it may not be fully applicable to a particular release.
This might especially happen for patch releases. You are therefore advised to read the installation instructions
delivered with the Common Pipeline Library distribution. These release-specific instructions can be found in
the file README located in the top-level directory of the unpacked Common Pipeline Library source tree. The
supported platforms are listed in Section 2.1. It is recommended that you read through Section 2.2.3 before you
commence the installation procedure.

2.1 Supported platforms

The utilisation of the GNU build tools should allow you to build and install the Common Pipeline Library on a
variety of UNIX platforms. The goal is to support the following target platforms:

� HP-UX 11.00 or later,

� Sun Solaris 2.8 or later,

� Linux (glibc 2.1 or later),

� DEC/Alpha (OSF/1 or Tru64),

� AIX, and,

� BSD compatibles.

However, only the VLT target platforms and operating systems, HP-UX 11, Solaris 2.8 and Linux (glibc 2.1 or
later), are officially supported at this stage.

2.2 Building the CPL from the source distribution

This section shows how to obtain, build and install the Common Pipeline Library on your system from the
official source distribution.

2.2.1 Requirements

To compile and install the Common Pipeline Library you need:

� qfits 4.3.5 or later,

� an ANSI/ISO-C99 compliant C compiler (preferably gcc 3.2 or later),

� the GNU gzip data compression program,

� a version of the tar file-archiving program, and,

� the GNU make utility.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 11 of 70

2.2.2 Downloading the CPL source distribution

You may always obtain the latest release of the Common Pipeline Library sources from the ESO FTP server. To
download the source distribution, point your browser to:

ftp://ftp.eso.org/pub/cpl

The CPL sources are distributed as a gzipped tar archive named in the format cpl-X.Y.Z.tar.gz, where
X and Y are the major and minor release numbers, and Z denotes the patch level (which might be missing if no
patch has been released).

In addition, the Common Pipeline Library depends on the qfits library (see section 2.2.1). The qfits distribution
is available from the official download page at:

http://www.eso.org/projects/aot/qfits

To build the Common Pipeline Library, at least the static qfits library must be available on your system. If the
shared object library is also present it will be used at run-time. Using the shared object library has the advantage
that qfits can be updated, if necessary, without the need to re-compile the CPL afterwards.

2.2.3 Compiling the Common Pipeline Library

It is recommended that you completely read through this section before you actually begin with the installation.

1. First, if an appropriate version of qfits (c.f. section 2.2.1) does not already exist on your system, compile
and install the qfits libraries. For detailed instructions on how to install the qfits libraries please refer to
the qfits documentation.

Typically, for an installation into the default directory /opt/qfits (you might need root privileges to
do this) you must execute:

$ zcat -d qfits-X.Y.Z.tar.gz | tar -xvf -
$ cd qfits
$./configure --enable-shared
$ make static dynamic
$ make install

The following assumes that qfits is installed in /opt/qfits.

2. Unpack the CPL sources in a directory of your choice using

$ zcat -d cpl-X.Y.Z.tar.gz | tar -xf -

at the system prompt. This will create a directory called cpl-X.Y.Z containing the source tree.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 12 of 70

3. Before running the configuration script it is recommended that you add some variables to your environ-
ment.

The environment variable QFITSDIR tells the configuration script where the qfits libraries and header
files can be found. Actually, this variable needs to be defined only if qfits has not been installed in the
default directory /opt/qfits or any of the system’s standard directories. The environment variable
CPLDIR determines the installation prefix for the CPL. The default is /usr/local and usually the
installation must be done as root.

It is not mandatory to have the variables CPLDIR and QFITSDIR defined since you may pass the instal-
lation prefixes as command line options to the configuration script (c.f. 4). But packages depending on
the CPL might look for these definitions at build time (see Section 3.3 for instance), so that it is simply
convenient to have them defined as part of your environment. In the following, it is assumed that both
CPLDIR and QFITSDIR are set correctly.

Please note that assigning the default installation prefixes to the environment variables in the example
below is just for demonstration purposes. In principle, they could be set to any directory for which you
have write access with one exception: it is not recommended that you install the CPL into its own source
tree.

If your shell is the Bourne or a compatible shell (i.e. sh, bash, ksh, zsh, etc.) you should add:

QFITSDIR=/opt/qfits
CPLDIR=/usr/local
PATH=$CPLDIR/bin:$PATH
LD_LIBRARY_PATH=$CPLDIR/lib:$QFITSDIR/lib:$LD_LIBRARY_PATH
export CPLDIR QFITSDIR LD_LIBRARY_PATH

to the file .profile (or .bashrc if you are using bash). If you are using the C-shell (i.e. csh or tcsh)
the commands above translate into:

setenv QFITSDIR /opt/qfits
setenv CPLDIR /usr/local
setenv PATH $CPLDIR/bin:$PATH
setenv LD_LIBRARY_PATH \

$CPLDIR/lib:$QFITSDIR/lib:$LD_LIBRARY_PATH

and should be added to the C-shell startup file .cshrc.

The variable LD_LIBRARY_PATH is the dynamic linker’s search path and allows an application to find
the CPL libraries at run-time if they are not installed in one of the system’s standard directories. Please
note that the name of this variable may depend on the platform on which you are working. The name
LD_LIBRARY_PATH is used on Linux and Solaris platforms whereas on an HP-UX system it is called
SHLIBS_PATH. For details please refer to the documentation of your system; the dynamic linker’s man-
ual pages are a good starting point.

To activate these settings you may either logout and login again, source the startup script manually. Alter-
natively, you may use the command line options of the configuration script, as described in 4. Note that
if you are going to install dependent packages you might have to repeat these command line options for
each of these packages, if the variables CPLDIR and QFITSDIR are not set.

4. To compile and install the CPL on your system run the following sequence of commands:

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 13 of 70

$ cd cpl-X.Y.Z
$./configure
$ make
$ make install
$ make install-html

Before installing the CPL on your system you may want to verify that the CPL was built correctly. This
can be done by running the command make check before executing make install. This will build
and run some test cases and it will output a short summary of the test results at the end.

The last command, make install-html, is optional and installs the Common Pipeline Library On-
Line Reference Manual into the directory $CPLDIR/share/doc/cpl/html. The on-line documen-
tation for the C Extension Library may be found in $CPLDIR/share/doc/cext/html.

The configure script provides a variety of command-line options to customise the CPL installation.
The list of available options can be obtained by running ./configure --help in the top-level direc-
tory of the source tree. Using a command line option always takes precedence over any previously set
environment variable. In particular, the variables CPLDIR and QFITSDIR are overridden by the options
--prefix and --with-qfits respectively.

At this point, the installation of the Common Pipeline Library is complete and you can start using it. If the
installation did complete successfully, you may also safely delete the whole source tree to save disk space, as it
is no longer needed.

If the CPL has been installed into one of the system’s standard directories, the dynamic linker search path does
not need to be modified, as these directories are searched by default. But on Linux systems, it might be necessary
to update the dynamic loader’s cache by executing the command ldconfig as root at the system prompt.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 14 of 70

3 Software development with the CPL

This section gives a short overview on how the Common Pipeline Library can be used to develop your own
software, either simple applications, just using the facilities provided by the CPL libraries, or Pluggable Data
Reduction Modules (PDRM), to be used as part of one of ESO’s VLT instrument pipelines.

3.1 Getting started

In this document we assume that you know the ANSI C programming language, your C compiler and that you
are also familiar with the GNU make utility.

Before you start coding it is recommended that you, at least, skim through this manual to get a short overview
of the components provided by the CPL. In the following chapters you will also find code snippets which
demonstrate the typical usage of the various components. Two small examples illustrating the two different
kinds of CPL ‘applications’ can be found in the Sections 3.4 and 3.5.

After making yourself familiar with main CPL components and concepts, you can start working on your project
by having a look at the CPL on-line reference manual to get in depth knowledge of the CPL components you
want to use.

3.2 Using the Common Pipeline Library in your project

If you want to use the CPL, you need to know where the header files and the libraries are installed. By default,
the CPL header files and libraries can be found in the subdirectories include and lib of the root directory of
your CPL installation, but the actual location might be different depending on the configuration options used at
build time.

In the following, it is assumed that the CPL has been installed in its default location /usr/local, so that the
header files are located in /usr/local/include and the libraries can be found in /usr/local/lib.

Alternatively, the GNU build tools autoconf, automake and libtool may be used. In general, this is the rec-
ommended way to compile and link your application. Especially if you are going to develop CPL plugins,
the use of the GNU build tools makes dealing with shared object libraries for different platforms a lot easier.
Comprehensive information on the GNU build tool can be found via http://www.gnu.org.

The CPL provides support for the GNU build tools by providing a small collection of autoconf macros in the
two macro archives cpl.m4 and eso.m4. These archives contain, among others, macros to locate the CPL
header files and libraries on your system and to setup the appropriate Makefile symbols needed to compile
and link a CPL application. You can find them in the CPL source tree in the subdirectories m4macros and
libcext/m4macros. To use them copy the two files to the source tree of your own project so that they can
be found by the aclocal tool, which is part of the GNU automake package.

If you are going to develop a fully-fledged VLT instrument pipeline, the use of the GNU build tools is not only
recommended, but required. An appropriate CPL SDK containing the necessary tools and a template directory
tree will be available on request.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 15 of 70

3.3 Linking your application with the CPL

The CPL libraries libcplui, libcplbase and libcplcore, together with libcext and the libqfits library, form a hier-
archy, i.e. there are inter-library dependencies, of which you need to be aware, when linking your application.
Figure 1 shows the library dependencies of a CPL application using functionalities from all the CPL libraries.

Application

Application specific Libraries (optional)

libcplui

libcplbase

libcplcore

libqfits libcext

System Libraries

L
ib

ra
ry

 D
ep

en
de

nc
ie

s

A
PI L

evel
H

igh
L

ow

Figure 1: Library dependencies of a CPL application

For an application as shown in Figure 1, the linker command would look like the following, with the trailing
ellipsis being a placeholder for any system libraries that are also used:

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcplui -lcplbase -lcplcore -lcext \
> -L$QFITSDIR -lqfits
�
�

The order in which the libraries are linked matters and is determined by the inter-library dependencies. This
implies that the order of linking for the two libraries libcext and libqfits does not matter in the above example.
Actually, these two libraries may even be skipped, since the CPL library libcplcore usually includes these
dependencies, so that running the command

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcplui -lcplbase -lcplcore
�
�

should be sufficient.

An application programmer is free to choose which CPL facilities he or she wishes to use and therefore needs
to link only with the libraries upon which the highest-level library used depends. Therefore, for an application
which uses only components from libcplcore, the above linker command would become:

$ gcc -o myapplication myapplication.o -lmylibrary \
> -L$CPLDIR/lib -lcplcore -lcext -L$QFITSDIR -lqfits
�
�

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 16 of 70

3.4 Writing a simple Common Pipeline Library application

The CPL libraries can be used as any other library on your system to write applications. This section provides
you with a simple example of how to do this; CPL’s “Hello, world!” program:

#include <cpl_init.h>
#include <cpl_messaging.h>

int main()
{

cpl_init();

cpl_msg_start();
cpl_msg_info("hello()", "Hello, world!");
cpl_msg_stop();

return 0;

}

Compiling this program and running it at the system prompt produces the output:

$./hello

[INFO] Hello, world!

Line-by-line Walkthrough

The first line

#include <cpl_init.h>

includes the prototype of the CPL initialisation function and the second line

#include <cpl_messaging.h>

includes the services of the CPL messaging component. As with every C-program, a CPL application has to
start with the usual definition of the main-function:

int main()

{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 17 of 70

The first function call

cpl_init();

initialises the CPL. In particular, the library’s memory management system is initialised. The function cpl_init()
must be called before any other CPL function is called!

Now the application can start doing the real work. After the library has been initialised, the CPL messaging
system is started by calling

cpl_msg_start();

The function call

cpl_msg_info("hello()", "Hello, world!");

writes the well-known message to the terminal, with a prefix indicating the message severity. The first argument,
the string "hello()", is the component tag and indicates the program, module or function which emits the
message. The component tag is not printed by default and therefore does not appear on the screen. The last
function call in this example

cpl_msg_stop();

shuts down the CPL messaging system.

The program ends with a successful return from main():

return 0;

}

The previous example shows the basic layout of any CPL application. After the library initialisation and the
setup of the messaging system your application can use all the facilities provided by the CPL.

For further details on the messaging component please refer to Section 5.2.6 and the CPL reference manual [4].

3.5 How to implement a Pluggable Data Reduction Module

This section shows how a simple data reduction task, namely doing basic arithmetic with two images, can be
implemented using the CPL plugin interface.

What is a plugin

A plugin is a unit of code that can be incorporated into a parent application at run-time. Unlike a static or
dynamic library, the details of the plugin’s existence do not need to be known by the parent application when

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 18 of 70

it is built and vice versa. As such, plugins are extremely useful for pipeline-management software or GUIs,
where the developers may wish to modify parts of the pipeline code, without necessarily restarting the parent
application (let alone recompiling it).

In a way, this is similar to spawning a child process (although plugins are, in general, executed synchronously).
However, the child-process method then needs to take into consideration communication with the parent ap-
plication, which means the definition of, and strict conformance to, an interface specification, which is then
difficult to check outside the run-time environment. It also means that the child process needs to implement
some interprocess communication methods.

In comparison, a plugin implements its interface simply through the provision of four function calls, that are
expected by the CPL plugin interface in the parent application. The parent application does not need to know
about the plugin’s existence at compile time, but can learn about the plugin’s existence via user input or a
configuration file, during normal execution. It can then query the existence of the plugin, and again handle the
case where the plugin is not available in a graceful manner.

If the plugin is available, then the code within it may be invoked by this standard interface. Of course, the
downside is that, unlike a completely separate child process, the plugin is executed within the address space of
the parent application, which means that fatal errors (e.g. segmentation fault) will take down both components,
unless the appropriate provisions are made.

What is a PDRM

A Pluggable Data Reduction Module (PDRM) is just a specialised type of plugin, suitable for implementing a
data reduction task, i.e. a recipe. In other words, if a recipe, is implemented using the CPL plugin interface, it is
called a Pluggable Data Reduction Module.

This section demonstrates how easy it is to implement such a Pluggable Data Reduction Module. It is easy,
because a plugin developer does not need to know how the input for the data reduction task is created. He or
she can expect that the complete information the data reduction task needs is available when it executes. All the
"nitty-gritty" details of command line parsing, file management, etc., are left to the application using the plugin.

What is needed

To implement a PDRM, four functions have to be implemented which are used by the application to obtain some
information about the plugin, to initialise, execute and "clean it up". In addition, one or more functions doing
the real work are needed too.

An Example

The example shown below describes a PDRM which supports basic arithmetic with images. It will provide one
option, for selecting the arithmetic operation to be executed.

The first function to implement is the one that the application will call initially in order to obtain the necessary
information about the plugin. This function is described as part of the plugin interface, i.e. the function’s
prototype and its name are defined by the interface but the function needs to be re-implemented by each plugin.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 19 of 70

This is the only function which needs to be exported by the PDRM, i.e. this is the only function which must not
be declared static in the module’s source file.

The function is called cpl_plugin_get_info, returns an int, takes a pointer to cpl_pluginlist as its
only argument and it can be implemented either using the public interface of the plugin directly or the provided
convenience function. An implementation, completely ignoring error handling to keep it simple, would look
like:

#include <cpl_memory.h>
#include <cpl_recipe.h>
#include <cpl_plugininfo.h>

#define MY_PLUGIN_VERSION 1

/* Plugin detailed description */

static const char *
myplugin_help = "The plugin adds, subtracts, multiplies or divides "

"two images depending on the operation choosen by the "
"parameter ‘operation’.";

int myplugin_create(cpl_plugin *);
int myplugin_exec(cpl_plugin *);
int myplugin_destroy(cpl_plugin *);

int
cpl_plugin_get_info(cpl_pluginlist *list)
{

cpl_recipe *recipe = cpl_calloc(1, sizeof *recipe);
cpl_plugin *plugin = (cpl_plugin *)recipe;

cpl_plugin_init(plugin,
CPL_PLUGIN_API,
MY_PLUGIN_VERSION,
"myplugin",
"Do basic arithmetic on two images",
myplugin_help,
"Gill Bates",
"gbates@macrohard.com",
"GPL",
myplugin_create,
myplugin_exec,
myplugin_destroy);

cpl_plugin_list_append(list, plugin);

return 0;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 20 of 70

}

The first three lines include the definitions of the CPL memory services, the cpl_recipe,cpl_plugin and
cpl_pluginlist types.

The symbol MY_PLUGIN_VERSION is defined to be the recipe’s version number and the static variable
myplugin_help is assigned to the recipe’s detailed description. This is followed by the forward declara-
tions of the three remaining functions which must be implemented to create, execute and destroy the recipe.

The function cpl_plugin_get_info is implemented as follows. First, memory to hold the recipe object
is allocated. The subsequent cast of the variable recipe, which is a pointer to cpl_recipe, into a pointer
to cpl_plugin is possible because the class cpl_recipe is a subclass of cpl_plugin (see the ISO-C
standard ISO/IEC:9899:1999(E) 6.7.2.1 for details).

The cpl_plugin part of the recipe object is then initialised with the version of the cpl_plugin class
implementation, the recipe’s version, the name of this recipe plugin, a short description of its purpose, a longer
help text and license information. The last three arguments passed in the call to cpl_plugin_init are the
functions the application will use to initialise, execute and destroy the recipe plugin. Their implementations are
discussed below.

As a last step, the plugin is appended to the list of plugins. This list must be provided by the application
calling cpl_plugin_init. At this point, the creation of the recipe plugin with all necessary information is
completed and the function returns successfully.

What is left to be done is the implementation of the initialisation, execution and cleanup functions. In the be-
ginning, it was mentioned that our example should be configurable insofar, that a user may select the arithmetic
operation to be performed. It is the duty of the PDRM to provide the information about any options it accepts
to an application which uses the PDRM. In our example, we need to define our arithmetic operator option. The
correct place to do this is the PDRM’s initialiser function. The created parameter(s) are stored in a parameter
list, which can be queried and updated by the calling application. These configuration parameters may, for
instance, be mapped into command line options by the calling application. Since the recipe configuration is cre-
ated during the plugin’s initialisation, it has to be destroyed in the end, namely, in the plugin’s cleanup handler.
A typical implementation of these two functions looks like:

static int
myplugin_create(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;
cpl_parameter *p;

recipe->parameters = cpl_parlist_new();

p = cpl_parameter_enum_new("myplugin.operation",
CPL_TYPE_STRING,
"Arithmetic operation to apply.",
"myplugin",

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 21 of 70

"add", 4,
"add", "subtract", "multiply", "divide");

cpl_parameter_set_alias(p, "op", NULL, NULL);
cpl_parlist_append(recipe->parameters, p);

return 0;

}

static int
myplugin_destroy(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

cpl_parlist_delete(recipe->parameters);

return 0;

}

In the very beginning, both functions must convert the plugin which has been passed to them from a pointer to
cpl_plugin into a pointer to cpl_recipe to get access to the additional members that the cpl_recipe
class provides. This cast operation is safe since the plugin has been explicitly instantiated as a cpl_recipe
in the cpl_plugin_get_info function, that was called initially.

The recipe subclass has two additional members compared to its superclass, the generic plugin. These two data
members are the list of recipe configuration parameters and the set of input data frames which it should process.
The list of accepted configuration options is created by the recipe while the set of input frames must be filled in
by the calling application.

In the remainder of the initialisation function, a parameter list and an enumeration parameter is created (please
refer to [4] for the technical details on how to create the various kind of parameters). The created parameter
will allow the selection of the arithmetic operations supported by the recipe. Changing its value, via the calling
application’s user interface, will configure the PDRM using the requested operator during its execution. For
the user’s convenience, a short alias name for the parameter is provided which may be used by an application
instead of, or in addition to, the parameter’s fully qualified name. Finally, the parameter is appended to the
parameter list. The only operation which is necessary in the cleanup handler is the one required to destroy the
parameter list and all its contents, therefore its implementation is straight forward.

The last interface function which is needed is the function to execute the recipe. Again the implementation is
straight forward, assuming that the actual processing function my_image_arithmetics does all the work.

static int
myplugin_exec(cpl_plugin *plugin)
{

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 22 of 70

cpl_recipe *recipe = (cpl_recipe *)plugin;

return my_image_arithmetics(recipe->parameters, recipe->frames);

}

The implementation of the processing function my_image_arithmetics is left to the reader as an exercise.

The three functions initialising, executing and destroying the recipe plugin are defined as static functions.
There is no need to make them publicly available because they are exported by the plugin interface itself and
they are only called through this interface.

As mentioned before, the example does not implement any error handling. For the three handler functions and
the function to obtain the plugin information it is required that they return 0 on success and a non-zero value to
indicate an error.

The complete source code of the example can be found in appendix B. To try it, you should build a shared object
library from the source and you must provide the actual processing function.

3.6 Current library limitations

� Currently the CPL does not provide the libcplbase library. It will be made available in future releases.

� The CPL libraries and also the qfits library are not thread-safe!

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 23 of 70

4 CPL general design features

4.1 OO approach

The CPL has been written in C, but following an object-oriented (OO) approach wherever it makes sense.
Modules are built around a class, which comprises a typedef (usually a struct) and a list of associated
methods to work on it.

For example, the image class is built like this:

/* Class definition */
typedef struct _cpl_image_ {

... CPL image attributes ...
} cpl_image ;

/* Associated methods */
cpl_image *cpl_image_new(...);
cpl_image *cpl_image_copy(...);
void cpl_image_delete(...);

Understanding the library means parsing through the list of offered components and looking at the implemented
methods. There are components for the handling of the data to process (images, cubes, pixel maps, tables, vec-
tors, ...) and purely functional components to help programmers, such as the messaging and the error handling
components.

‘Data hiding’ is used wherever applicable. Most objects remain opaque and are only manipulated through
accessor functions. See the documentation for each component.

Polymorphism is hard to achieve in C, and is seldom used, if at all, in the CPL. The OO approach is limited here
to defining objects with attributes and methods.

4.2 Portability

The CPL is intended to have a long service life and evolve in accordance with the needs of the VLT. To avoid
locking the code to any particular platform, portability has been considered throughout the design of the CPL.
Achieving portable code is done in the CPL through tools like autoconf and automake that try to catch
all system dependencies and make them look the same to library users, ironing out any local peculiarity (e.g.,
HP-UX lacks many standard tools or has them with different names). But this is not the end of the story. During
development, we kept in mind all the basic portability rules and relied on the use of compiler options (like
-ansi, -pedantic-errors,-Wall), and tools such as lint. The aim was that the CPL should be usable
on any kind of POSIX-compatible system.

System-specific optimisations may be added later if they do not involve modifying any API in the code. If
optimisations are introduced, they shall be resolved at compile-time and hidden from library users.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 24 of 70

4.3 FITS I/O

The library used by the CPL to handle FITS I/O is qfits. This is a stand-alone library supporting all required
FITS file accesses. It is described in its own document; see the qfits web page for more information:

http://www.eso.org/projects/aot/qfits

The qfits library makes use of the xmemory functions for any memory handling (see Section 4.4).

4.4 The xmemory memory model

xmemory stands for "Extended memory". It consists of a set of memory allocation/deallocation functions:

xmemory_malloc()
xmemory_calloc()
xmemory_realloc()
xmemory_free()
xmemory_strdup()

These functions are meant to replace the default standard library functions that control and handle all memory
allocation in applications.

4.4.1 Advantages of using xmemory

By using xmemory, memory can be allocated past the normal hardware limitations of the machine, i.e., more
than ‘RAM + swap’ can be allocated. To achieve this, the xmemory system will create its own swap files as
necessary.

Pointers allocated with xmemory will never be NULL. The xmemory system would exit the application if
this should really happen. So, if this model is used, it can be assumed everywhere in the code that memory is
always present in large quantities, making the handling of very large files not an issue, thus avoiding the need to
split input data into smaller chunks for handling at the lowest level.

It is possible to check for memory leaks at any moment using the appropriate memory-report function.

4.4.2 Using xmemory

Inside the CPL, every memory allocation function (e.g., malloc()) is redirected to its xmemory equivalent
(xmemory_malloc()). This process is invisible, since the standard allocation function names are used in the
code. Thus, developers should continue to use the normal system functions, but simply bear in mind that they
have been overloaded by the statement:

#include "xmemory.h"

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 25 of 70

Outside the CPL, the situation is different. The memory allocated inside the CPL has to be deallocated using
xmemory functions. This can be done either with the CPL objects destructor (e.g., cpl_image_delete())
to deallocate CPL objects or with cpl_free() for normal arrays created by CPL functions.

You are free to use xmemory to allocate/deallocate your memory in your code with cpl_malloc(),
cpl_calloc(), cpl_realloc() or cpl_free().

The only rule is that all the memory allocated with the xmemory model must be deallocated with it.

The access to these memory functions is provided by the statement:

#include "cpl_memory.h"

Please refer to appendix A for a more detailed description on the xmemory model.

4.4.3 Documentation on xmemory

This model is completely described in its own design and implementation document, which can be found on the
qfits web page (see section 4.3).

4.5 Error handling

Error handling in the CPL is done through the cpl_error component (see Section 5.2.7).

4.6 Library stability

The CPL group will strive to keep the API stable, in order to allow for an easier maintenance of the many VLT
pipelines. New releases will mostly provide new functionality and bug fixes, but radical design changes will be
avoided as much as possible.

4.7 Code conventions

The coding conventions adopted in the CPL are basically the ones described in Recommended C Style and Cod-
ing Standards [5]. Although the coding language used is ISO-C [ISO/IEC:9899:1999(E)], the CPL developers
have adopted an object oriented approach. A series of objects are defined (image, table, etc.) in the library and
methods are associated to them.

4.7.1 Objects

An object is a C structure that contains all the information needed to describe it. The objects chosen to populate
the CPL have been designed to be as small as possible. All the attributes associated with an object are mandatory.

An image, for example is defined by an array of pixels, the image size in X and Y, the pixel type and a bad pixel
map; nothing more.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 26 of 70

Adding more fields that are used only for some particular purposes in particular cases is an open door to end up
with huge objects in which we never know which attribute has been initialised/updated and which not.

If more complicated objects are needed, it is left to the developer to define his or her own local object composed
of the basic objects and other additional parameters defined as attributes.

Each object has one constructor that allocates the memory it needs, and a destructor that deallocates it. The
destruction of objects should always be done through its dedicated method.

4.7.2 Methods

Apart from the constructor and destructor, other methods are associated with an object. Basically, each function
that does something with an object or that modifies an object will be considered as a method of this object.

Any method can create or modify an object. In the latter case, the modified object should be passed as the first
parameter to the function. Of course, a method can also use a passed object without modifying it.

In the case of a failure, the input object shall always remain unchanged.

4.7.3 Functions

All functions shall be able to inform their caller about the success of their execution, either by returning an error
code (CPL_ERROR_NONE in case of success, the proper error code otherwise) or by returning a conventional
value (as a NULL pointer when a pointer is expected) and setting appropriately the error code (see section 5.2.7).

4.8 Naming conventions

First of all, each name in the CPL (file, function, object, variable, ...) is composed of words/abbreviations in
lower case, separated by underscores.

Example: my_variable is valid, but My_Variable or MyVariable or myvariable are not.

Furthermore, each function name, file name or object name in the CPL has been prefixed with cpl_.

Example: the image object is called cpl_image.

Included library in the CPL respect the same convention. They are prefixed by an identifier that make it clear
from where the object/function/file is derived. It is the case for qfits where the prefix qfits_ is used.

Each method name begins with the name of the object with which it is associated.

Example: cpl_image_add().

The two associated constructor and destructor methods are always named in the same way: object_name_new()
and object_name_delete().

Example: cpl_image_new_float() and cpl_image_delete().

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 27 of 70

5 The CPL components

5.1 Component libraries

The functionality of the CPL is provided by three component libraries, implementing the low-, medium- and
high-level CPL interfaces respectively. This allows applications to be linked with only the parts of the Common
Pipeline Library that are necessary.

The core library, libcplcore, provides the basic types like vectors, images and tables, as well as the basic
signal and image processing functionalities. It also provides facilities for accessing data files, for error sig-
nalling, and a set of functions for displaying messages and maintaining log files. Standard implementations for
instrument-independent data-reduction functions and functions for monitoring the data quality are provided by
the libcplbase library. Finally, the libcplui library implements the high-level data types and utilities serving as
an interface to the pipeline run-time environment.

For the low-level implementation of container data types (such as lists, or dictionaries), or utilities not available
on every UNIX system, the CPL libraries themselves depend on a small C library libcext extending the standard
C library. This library is provided as part of the CPL package.

For access to FITS data files, the CPL internally relies on the qfits FITS I/O library (see the qfits Reference
Manual for details). Since the CPL provides high-level facilities to read and write data from/to a FITS file,
direct calling of qfits functions is almost never needed, and should be limited to the definition of functions that
load FITS data into internal objects, and functions that save internal data objects to FITS files.

5.2 Core objects in libcplcore

5.2.1 Images

A cpl_image is conceptually a 2-dimensional array of pixels with two main characteristics. Firstly, a cpl_image
can be of several different types (currently supported are double, float, int and binary — i.e., boolean — images).
Secondly, each cpl_image can carry with it the knowledge of its own bad pixels, referred to as a bad pixel map.

All the CPL functions of type cpl_image (and only those) allocate a new cpl_image. Any allocated cpl_image
must be deallocated using the cpl_image_delete() function.

The following operations can be performed through the cpl_image methods’ interface:

� creating, loading from FITS files, saving to FITS files or deallocating images,

� copying images, converting images from one type to another or accessing image information,

� set or unset bad pixels in an image, count them, set the bad pixels from an ASCII file or from a binary
image,

� logical or morphological operations on binary images, selection and labelise functions,

� basic image operations, normalisation, thresholding, averaging, collapsing, extraction or flipping,

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 28 of 70

� various statistical computations on images,

� linear, median or morphological filtering operations, and,

� generation of images with random uniform noise, or with gaussian functions.

The different image components are described in the following sections. For some of them (e.g., cpl_image
or cpl_image_bpm), the way the data are stored internally is described. This is just to give a better idea on
what the CPL can do and how efficient it can be. But these internal structures should never be accessed directly;
every developer must restrict himself to only use the accessor functions provided in the library. By doing so, you
ensure that you do not need to change your code after any CPL update, as the internal structures may change
from one release to the next.

1. The image structure (cpl_image component)

An image comprises a size in x and y (in pixels), and a pointer to an array of pixels. The type field, and
the fact that the pixels are defined as void, allows this structure to contain any of the supported image
types (float, double, integer or even binary images).

The image-processing functions provided in the CPL can handle any meaningful kind of image. A user
would call the same function to filter a double or a float image.

Moreover, it is possible to attach to any image the knowledge of its bad pixels with the badpixelmap field
(stored as a cpl_sparseimage object). Again, any image processing function in the CPL takes this bad
pixel map into account whenever one is defined.

The implementation of the cpl_image structure looks like:

typedef struct _cpl_image_
{

int nx, ny;
cpl_type type;
void *pixels;
cpl_sparseimage *badpixelmap;

} cpl_image;

The image pixel buffer is two-dimensional but stored in a 1-dimensional array of pixels for efficiency
reasons. Pixels are numbered (like arrays in C) from 0 to ����������� �

.

Note that this pixel organisation does not pre-suppose any given orientation for the lines in the image.
The CPL convention, like the FITS convention (and as opposed to most other image formats), numbers
lines from bottom to top. However, this is not an issue for most image operators. The pixel in the � -th
column and the � -th row (starting at the lower left corner, conventionally corresponding to column 1 and
row 1) would be the pixel number ����� ����� � �!� ���#" ��� in the array (see Figure 2).

Changing the value of nx, ny, type or pixels directly is likely to corrupt the data and generate unpre-
dictable behaviour. As stated earlier, these fields should never be accessed directly. Accessor functions
are provided for this purpose (see IO routines description).

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 29 of 70

Image Pixels array in cpl_image

i=2, j=3, nx = 3 (i−1) + (j−1)* nx = 7

0 1 2 ...

Figure 2: Pixel storage in the 1D data array

2. The attached bad pixel map (cpl_image_bpm component)

The badpixelmap field in the cpl_image could have been a binary image in which the bad pixels would
be tagged. But the number of bad pixels is usually a small fraction of the total number of pixels. So, to
reduce the memory consumption, only the positions of the bad pixels are stored. The structure used is a
cpl_sparseimage defined as:

typedef struct _cpl_sparseimage_ {
int nz;
int *indices;

} cpl_sparseimage;

As for the cpl_image object, the fields should never be accessed directly, but with the provided accessor
functions.

The meaning of the badpixelmap-field is defined as:

� badpixelmap = NULL: No knowledge of bad pixels.
� ��$�%&� �

: No knowledge of bad pixels.
� ��$�%(' : All pixels are known to be good.
� ��$*)+' : At least ��$ pixels are known to be bad.
� indices != NULL if ��$,)-' .

When ��$.)/' , the indices array contains the ��$ positions of the bad pixels in the cpl_image pixels array
in increasing order and in the range 0 to ����������� �

(see Figure 3).

The cpl/tests/cpl_image_bpm-test.c file contains examples of cpl_image_bpm function
usage.

3. The image IO routines (cpl_image_io component)

There are two kind of functions that can be used to generate cpl_image objects from scratch or from a
FITS file.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 30 of 70

3 5

0 1 2 ...Image

badpixelmap:

pixels:

Figure 3: Bad pixel map information storage

The cpl_image_new_xxx() functions (where xxx is the required type among int, float,double
or binary) will create new empty images (some with allocated data buffer, some without).

The cpl_image_load()will load an image from a FITS file. If you load an image from a FITS file,
you have to specify which plane (you can store cubes in FITS files) in which extension, which type of
image you require, and the function will give back to you the specified newly allocated cpl_image.

Examples:

cpl_image *im1;
cpl_image *im2;
cpl_matrix *kernel;

/*
* Create a new image.
* CREATES A NEWLY ALLOCATED OBJECT THAT MUST BE DESTROYED.
*/

im1 = cpl_image_new_float(1024, 512);

/* Define the kernel */
...

/*
* Apply a median filter on im1.
* CREATES A NEWLY ALLOCATED OBJECT THAT MUST BE DESTROYED.
*/

im2 = cpl_image_filter_median(im1, kernel);
cpl_matrix_delete(kernel);

/*
* Subtract im2 from im1, a local operation.
* DOES NOT CREATE ANY NEWLY ALLOCATED OBJECT.
*/

cpl_image_subtract_local(im1, im2);

/* Delete both images */

cpl_image_delete(im1);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 31 of 70

cpl_image_delete(im2);

Please note that some cpl_image generation functions are provided in the cpl_image_gen component.
These ones are mainly used in our testing facilities.

This component also provides the possibility to convert images to another type, to save images to a FITS
file or to duplicate images. It also provides a series of accessor functions to retrieve the image size, type,
number of bad pixels or a pointer to the data buffer.

The cpl/tests/cpl_image_io-test.c file contains examples of cpl_image_io function us-
age.

4. The basic image operations (cpl_image_basic component)

This component offers the possibility to apply basic operations between images, including element-wise
addition, subtraction, multiplication and division.

Since all but unary operators may have image operands of different types we define the type of the result
to be that of the first operand. This means that with the CPL, the addition or multiplication of two images
of different types is non-commutative.

The default image operator is of type cpl_image and allocates a new image for the result. Additionally,
for some of the image operators, the CPL offers an equivalent assignment operator, which is named by
appending _local to the function name, e.g., cpl_image_add_local. These functions store their result in
their first operand and are of type cpl_error_code.

We define the result of an arithmetic operation on two pixels of which one or both are bad to be a bad
pixel.

The resulting bad pixel map of an element-wise-operation on two images is therefore the union of the bad
pixel maps of the two operands. See Figure 4.

4

3 2

1 3 6

4 25

724 31

8

7

6

5

1

62 9 65 11

25 14 35

8 6 8

Figure 4: Bad pixel map handling in basic images operations

For performance reasons, the operations are actually computed on all pixels (including any bad ones).

Functions between an image and a scalar variable are also offered (addition, subtraction, multiplication,
division, logarithm and exponential). In this case, the bad pixel map and the image type remain un-
changed.

Extraction, rotation, thresholding, collapsing and normalisation functions are also available. The handling
of the bad pixels in these functions is intuitive.

In the normalisation, the scaling factor is computed using the CPL image statistics functions which ignores
the bad pixels.

In the collapsing function, bad pixels are ignored in the flux summation (normal behaviour of the statistics
function), with a result that has a bad pixel only in the rare case where all pixels along the collapsing
direction are bad (see Figure 5).

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 32 of 70

1 3 6

4 25

724 31

5

0

9

11

7 8

Figure 5: Bad pixel map handling in the collapsing function

The cpl/tests/cpl_image_basic-test.cfile contains examples of cpl_image_basic func-
tion usage.

5. Statistics on images (cpl_image_stats component)

Several functions providing various statistics on cpl_image objects are offered: the value and position of
the minimum and maximum pixels, the mean, standard deviation, median, absolute flux and flux in the
image or just in a rectangular part of the image. Real-valued statistical functions are implemented as type
double regardless of the type of the input image. The statistics ignore bad pixels as shown in Figure 6.

9 65 11

25 14 35

8 6 8

1

2

3

77

67

34

5912 5

9

86

7

4

2 1

9

7

34

23

73

6

5

5

0

0

6

6

1

9

9

01

cpl_image_xxx_subw(image, 4, 2, 6, 4)image

maximum at position : 5, 3
maximum value: 14
minimum at position: 5, 2
minimum value: 6
mean = (9+11+14+8+8+6)/6 = 9.33333
median = 9
etc...

Figure 6: Bad pixel map handling in statistics computations

The cpl/tests/cpl_image_stats-test.cfile contains examples of cpl_image_stats func-
tion usage.

6. The image filtering functions (cpl_image_filter component)

This component offers linear filtering, morphological filtering, median filtering and standard deviation
filtering.

Without a separate handling of bad pixels, filtering involving a bad pixel will typically corrupt the neigh-
bouring pixels as shown in Figure 7.

In filtering it is therefore a significant improvement to be able to identify bad pixels and handle them
properly. In the CPL, the filter functions simply ignore the bad pixels, and use only the good ones in the
neighbourhood to compute the new value.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 33 of 70

1 1 1
1 1 1
1 1 1

Linear filtering with the following

3x3 kernel:

Figure 7: Filtering without bad pixels handling

1 1 1
1 1 1
1 1 1

Linear filtering with the following

3x3 kernel:

Figure 8: Filtering with the pixel (16, 6) tagged as bad

Figure 8 shows the result obtained when the bad pixel is correctly tagged.

This example shows that it is very important to flag the bad pixels as such; the neighbours are not affected
by the filtering, and the bad pixel itself can be recomputed using the good neighbours. The only case
where a bad pixel stays bad in the filtered image is when it only has bad pixels as neighbours.

Please note that the borders of the filtered image are set to 0 in the filtered image without being flagged as
bad pixels.

The cpl/tests/cpl_image_filter-test.c file contains examples of cpl_image_filter
function usage.

7. The use of binary images (cpl_image_binary component)

A binary image is an image in which pixels can only have two different values. This type of image is
widely used (and very useful) in image processing for object or edge detection. Furthermore, binary
images are very useful during operations that take bad pixel maps into account.

This particular type of cpl_image comes with the basic morphological operations like erosion, dilation,
closing and opening, and also the logical operations like and, or, not and xor.

A basic thresholding function to “binarise” a float or double image is provided. Figure 9 illustrates its
effect on an example, where the threshold is computed with the cpl_image_stats functions on the input
image.

Some simple morphological operation can be applied to the binary image to make one connected object
out of each detected star as shown in Figure 10. The operation applied here is a closing (erosion +
dilation).

Once the different objects are connected, we can apply a labelisation on the image to differentiate them
automatically (see Figure 11). The binary image is transformed into an integer image where the non-

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 34 of 70

Threshold
(Mean+2*Sigma)

Figure 9: Use of thresholding to binarise an image

Closing

Morphological

Figure 10: Effect of a morphological closing

selected pixels are set to 0 and pixels of each separate object are set to a label value. In this example, the
labels go from 1 to 9.

Such an integer image is a convenient tool to apply some computations on one and only one specific
object at a time.

Labelise

Figure 11: Labelisation of a binary image

Binary images are not supposed to contain any bad pixel map. If there is one attached to the binary image,
it would be simply ignored.

The cpl_image_binary-test.c file in the CPL tests directory contains examples of
cpl_image_binary function usage.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 35 of 70

5.2.2 Tables

Tables are generally defined as rectangular arrangements of cells, where cells belonging to the same column
contain data of the same type, while cells from the same row are related by some unifying characteristics. The
cpl_table component is based strictly on this definition.

A cpl_table is made of columns, and a column consists of an array of elements of a given type. Currently,
three numerical types are supported, CPL_TYPE_INT,CPL_TYPE_FLOAT, and CPL_TYPE_DOUBLE, plus
a type indicating columns made of character strings, CPL_TYPE_STRING. However, because of the way it is
designed, the cpl_table could be easily extended in future to support table columns of any conceivable data type
defined within the CPL (for instance, tables with columns whose cells would contain cpl_vectors or cpl_images
may be created).

A table column should only be accessed through the cpl_table interface, by specifying its name. The ordering
of the columns within a table is undefined; a cpl_table is not a � -tuple of columns, but just a set of columns.
The 0 elements of a column are counted from ' to 01� �

, with element ' on top. The set of all the table
columns’ elements with the same index constitutes a table row, and table rows are counted according to the same
convention. It is possible to flag each cpl_table row as ‘selected’ or ‘unselected’, and each column element
as ‘valid’ or ‘invalid’ (null flagged). Selecting table rows is mainly a way to extract just those table parts
fulfilling any given condition, while invalidating column elements is a way to exclude such elements from any
computation.

The cpl_table component ensures optimal performance and memory handling for most purposes. However,
a pointer to the primitive data types contained in a specific column or cell may be obtained, whenever the
developer finds that some table system performance drawback needs to be overcome.

A cpl_table may be created by means of its specific constructors, and used for storage and handling of informa-
tion that was generated within a program. The code in this case may look like this (error checking is omitted for
clarity):

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
int number_of_rows;
...
...
table = cpl_table_new(number_of_rows);

cpl_table_new_column_string(table, "Player");
cpl_table_new_column_int(table, "Games won");
cpl_table_new_column_int(table, "Games lost");
cpl_table_new_column_float(table, "Success rate");
...
cpl_table_delete(table);
...
return 0;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 36 of 70

}

Alternatively, a cpl_table may be simply loaded from a FITS file table extension, as in the following example:

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
int number_of_rows;
...
...

/*
* Loading a table from extension 2 of a FITS file.
* The last argument indicates that invalid table elements should
* be flagged.
*/

table = cpl_table_load("Championship_2003.fits", 2, 1);
number_of_rows = cpl_table_get_nrow(table);
...

/*
* Write the processed table to disk in FITS format (using a default
* FITS header), clean memory, then exit.
*/

cpl_table_save(table, NULL, NULL, "Revised_Championship_2003.fits", 0);
cpl_table_delete(table);
...
return 0;

}

The following operations can be performed through the cpl_table methods’ interface:

� defining and allocating new columns,

� creating new columns pointing to existing arrays of data,

� reading and writing table cells,

� shifting positions of column values,

� supporting invalid table cells,

� computing statistical quantities, performing arithmetic with scalar columns, etc., excluding invalid cells
from the computations,

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 37 of 70

� exporting column data, assigning a code of choice to invalid numerical cells,

� column duplication, casting, moving from one table to another,

� resizing tables,

� merging tables,

� duplicating tables,

� creating new tables modelled on existing tables,

� sorting table rows,

� selecting and extracting subtables from existing tables, and,

� loading and saving tables as FITS files.

The methods to support these and other operations are all described in detail in the CPL Reference Manual [4]
but, in the following, some of the functionalities are explained with the help of a number of simple examples.

1. Support of invalid table cells

Table cells may be flagged as invalid. This is, in general, a way to exclude some of the values from a
given operation, for instance the computation of a mean, or of an arithmetic operation, as in the following
example (error checking is omitted for clarity):

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
int i;
int nrows = 10;
double mean;
...

/*
* Create a table with a predefined length of 10 rows, and create
* an integer column named "Numbers" with the numbers from 1 to 10:
*/

table = cpl_table_new(nrows);

cpl_table_new_column_int(table, "Numbers");
for (i = 0; i < nrows; i++)

cpl_table_set_int(table, "Numbers", i, i + 1);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 38 of 70

/* Flag the "Numbers" column’s first and third cells as invalid */

cpl_table_set_null(table, "Numbers", 0);
cpl_table_set_null(table, "Numbers", 2);

/*
* Compute the mean value: the values flagged as invalid are
* automatically excluded from the computation:
*/

mean = cpl_table_column_mean(table, "Numbers");

/*
* Now restore the original values: the corresponding table
* column elements are automatically considered again as valid.
* A different mean value is now computed.
*/

cpl_table_set_int(table, "Numbers", 0, 1);
cpl_table_set_int(table, "Numbers", 2, 3);

mean = cpl_table_column_mean(table, "Numbers");

...
cpl_table_delete(table);
...
return 0;

}

It should be noted that when a table column value is flagged as invalid, it is lost: there is no function to
unset a null flag. The only way to unset a null flag is to write a valid value to the corresponding table
cell. It is important to be aware of this every time the data array of a table column is exported to another
process (e.g., a fitting routine), as in the following code section:

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
float *data;
int size;
...

/*
* It is assumed that the float column "Data" contains some
* invalid values. The data array of the table column is extracted
* and passed to an external fitting routine, but this is a
* mistake: in fact the array elements corresponding to an

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 39 of 70

* invalid element contain garbage.
*/

data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);

/*
* In case the external fitting routine would support a special
* "code" to identify invalid values that would be excluded from
* the fit - for instance, 0.0 - such code may be written to the
* internal data buffer before exporting:
*/

cpl_table_column_code_null_float(table, "Data", 0.0);

/*
* In this way the invalid values would still remain flagged as
* invalid, but the exported data would not contain any garbage
* and the fitting routine would work properly:
*/

data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);

/*
* It is likely that a more common solution would be to physically
* remove any invalid value from a table before exporting the
* internal data buffer to the foreign routine. Here the table
* would be modified, and its size would be smaller than before:
* the function cpl_table_clean() removes from a table any row
* containing at least one invalid value.
*/

cpl_table_clean(table);
data = cpl_table_get_data_float(table, "Data");
size = cpl_table_get_nrow(table);

<result of the fit> = fit(data, size);
...
cpl_table_delete(table);
...

return 0;
}

The most obvious example of exporting a column’s internal data buffer to an external process is when a ta-

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 40 of 70

ble is converted to FITS format and written to disk. This is done by the function cpl_table_save(),
that converts any invalid column value to the FITS convention for null values. Invalid values in numerical
columns of type CPL_TYPE_FLOAT and CPL_TYPE_DOUBLE are replaced by their own NaN bit
pattern, while invalid character strings in CPL_TYPE_STRING columns are replaced by sequences of
blanks. The only exception is represented by invalid values in columns of type CPL_TYPE_INT, that
are the only ones that need a specific code to be explicitly assigned to them. This can be realised by
calling the function cpl_table_column_code_null_int() for each table column of type int
containing invalid values, just before saving the table to FITS. The numerical values identifying invalid
integer column elements are written to the FITS keywords TNULLn (where n is the column sequence
number).

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
int nrows = 10;
...

/*
* Create a table with a predefined length of 10 rows, create
* an integer column named "Numbers", and fill it with the value 3:
*/

table = cpl_table_new(nrows);

cpl_table_new_column_int(table, "Numbers");
cpl_table_fill_column_int(table, "Numbers", 0, nrows, 3);

/* Flag the "Numbers" column’s first and third cells as invalid */

cpl_table_set_null(table, "Numbers", 0);
cpl_table_set_null(table, "Numbers", 2);

/*
* Save to a FITS file, but give first the code 999 for the NULL
* values. The output FITS file header will contain the TNULL
* keyword (corresponding to this column) set to 999.
*/

cpl_table_column_code_null_int(table, "Numbers", 999);
cpl_table_save(table, NULL, NULL, "output_table.fits", 0);
cpl_table_delete(table);
...

return 0;
}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 41 of 70

Beware that if valid column elements have the value identical to the chosen null-code, they will mistakenly
be considered invalid within the FITS convention.

2. Shifting position of column values

It may be useful in some cases to shift the positions of all the values of a given table column by a specified
amount. This is done with the table function cpl_table_shift_column(). The most obvious
application of this functionality is in the computation of the finite differences of a sequence of numbers,
the discrete analogue of the differential operation.

In the following example the finite forward difference of the values in the float table column "Values"
is written to the new float table column "Forward differences" (error checking is omitted
for clarity):

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
char input[] = "input_table.fits";
char output[] = "output_table.fits";
...

/*
* Load the table data from a given FITS file. We assume here
* that the table contains a float column named "Values".
*/

table = cpl_table_load(input, 1, 1);

/*
* A simple procedure: duplicate the input column, move the values
* of the duplicated column upward by one position, and finally
* subtract the original column values from the shifted ones,
* writing the result to the duplicated column itself.
*/

cpl_table_duplicate_column(table, "Forward differences", table, "Values");
cpl_table_shift_column(table, "Forward differences", -1);
cpl_table_subtract_columns(table, "Forward differences", "Values");

/*
* Write the new table to disk in FITS format (using a default FITS
* header), clean memory, then exit.
*/

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 42 of 70

cpl_table_save(table, NULL, NULL, output, 0);
cpl_table_delete(table);

return 0;
}

In the example the last element of the "Forward differences" column turns out to be flagged as
invalid: the upward shift leaves the corresponding table cell empty, so that it was automatically excluded
by the subtraction operation.

3. Selecting and extracting subtables from existing tables

A set of functions of the cpl_table component is used to select a number of rows from an existing table,
before copying them to a new table. The selection functions are used to apply simple selection criteria,
that can be logically combined to define more complex criteria. With the only exception of the function
cpl_table_reverse_selection(), all the selection functions names include the words _and_
or _or_, to indicate how a given selection criterion should be combined with the existing row selection
of a given table. The _and_ tag indicates that between the existing selection and the new selection
criterion an intersection is made, while the _or_ tag indicates that between the existing selection and
the new selection criterion a union is made. The initial state of any table is that all of its rows are selected,
and therefore the first selection applied to a table would always be an _and_ selection, as shown in the
following example:

...
#include <cpl_table.h>
...
int main()
{

...
cpl_table *table;
cpl_table *subtable;
char input[] = "input_table.fits";
char output[] = "output_table.fits";
int selected;
...

/*
* Load the table data from a given FITS file. We assume here
* that the table contains a float column named "Day", a string
* column named "Month", and an integer column named "Year".
* This table begins with all rows selected, but in this
* example we ensure this explicitly:
*/

table = cpl_table_load(input, 1, 1);
cpl_table_select_all(table); /* Not really necessary... */

/*

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 43 of 70

* Here we select all rows containing the year 1958 and the year
* 2003; from those we select those having a month beginning with
* the letter "A" or "a", and a day between 5.5 (included) and 12.3
* (excluded). Finally, we add to all these any row containing
* the month "May" (no matter what year or day). Each function
* call returns the total number of selected rows, that in this
* example is always discarded, with the exception of the last
* call.
*/

cpl_table_and_select_int(table, "Year", EQUAL_TO, 1958);
cpl_table_or_select_int(table, "Year", EQUAL_TO, 2003);
cpl_table_and_select_string(table, "Month", EQUAL_TO, "^[Aa].*");
cpl_table_and_select_float(table, "Day", NOT_LESS_THAN, 5.5);
cpl_table_and_select_float(table, "Day", LESS_THAN, 12.3);
selected = cpl_table_or_select_string(table, "Month", EQUAL_TO, "May");

/*
* If some rows survived, a new table is created from the selected
* rows and it is saved to a FITS file:
*/

if (selected != 0) {
subtable = cpl_table_extract_selected(table);
cpl_table_save(subtable, NULL, NULL, output, 0);
cpl_table_delete(subtable);
cpl_table_delete(table);
return 0;

}

cpl_table_delete(table);
return 1;

}

Note that in matching strings the reference value is interpreted as a regular expression. All the se-
lection functions involving comparisons with a constant require that the constant has the same type of
the referred column. For this reason there is a function for each available column type. The functions
cpl_table_and_select() and cpl_table_or_select(), without any type suffix, are used
in the comparison of the values from two numerical columns.

5.2.3 Vectors

In the Common Pipeline Library, the vector component is named cpl_vector. It is a simple structure with
an array of double values and a size. This basic object can be used to build more complicated types, such
as a complex array (combination of a vector for the real values and a vector for the imaginary values) or a
1-dimension function (see 5.2.4).

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 44 of 70

To create or delete a cpl_vector object, you must use the dedicated functions cpl_vector_new() and cpl_vector_delete().

Here is an example that shows how a cpl_vector can be used to load a values list from a text file, to subtract the
mean and write the result into another text file:

int main()
{

cpl_vector *vect;
double mean;
FILE *out;

/*
* Read values from an ASCII file and store it in a cpl_vector.
* myfile.txt contains a list of the vector values (one per line)
*/

vect = cpl_vector_read("myfile.txt");

/* Compute the mean of the vector */
mean = cpl_vector_mean_reject(vect, 1, 1);

/* Subtract the mean */
cpl_vector_const_op(vect, mean*(-1.0), ’-’);

/* Write out the result to a file */
out = fopen("output_file.txt", "w");
cpl_vector_dump(vect, out);

/* Delete and close */
cpl_vector_delete(vect);
fclose(out);

/* Return */
return 0;

}

Some of the functionalities provided by this component are :

� vector constructor and destructor,

� routines to read/write a vector from/to a file,

� sorting functionality,

� basic arithmetic operations between vectors or between a vector and a constant,

� statistics computed on a vector (find the minimum, the maximum, calculate the mean, ...),

� derive the low frequency signal from a vector, and,

� vectors comparison methods.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 45 of 70

The functionalities implemented at the moment are basic. The aim is not to try to forsee every conceivable func-
tion that could be needed. If new requirements come, then the dedicated functions will be designed accordingly.
This approach keeps the Common Pipeline Library as small as possible, but not excluding the possibility of later
extension.

5.2.4 1d Functions

In addition to the vector component, a 1-dimension function component, cpl_1dfunction, has been defined. This
object is simply composed of two cpl_vector objects; one for the X coordinate, the other for Y.

Again, there are dedicated functions to create or destroy this object (in this case, cpl_1dfunction_new() and
cpl_1dfunction_delete()).

The functionality provided by the 1d Function methods includes:

� a constructor and a destructor,

� read/write functionalities, and,

� local maximum, centroiding, interpolation or cross-correlation functions.

5.2.5 Matrices

Matrices are generally defined as a set of numbers arranged in a rectangular grid of rows and columns. The
cpl_matrix component only supports sets of numbers in double precision.

The cpl_matrix is an opaque object; access and manipulation of matrix data is done through an interface of
methods and accessors designed for that purpose. Such methods are intended to support basic matrix handling,
ensuring optimal performance and memory usage. Besides, a pointer to the data buffer of matrix elements
is available whenever the developer finds that a particular algorithm is missing from the library, or specific
performance requirements need to be fulfilled. The internal data buffer of a cpl_matrix is a simple array of
double values, where the first value refers to the upper left position of the matrix, and the last value to the
lower right position. The values are listed row by row, with each row running from left to right and starting with
the top row. The elements of a cpl_matrix are indexed starting from ' , i.e., the first matrix element at the upper
left position has index '324' .

A cpl_matrix may be created with one of its specific constructors, and used for storage and handling of in-
formation that was generated within a program. The code may look like this (error checking is omitted for
clarity):

...
#include <cpl_matrix.h>
...
int main()
{

...
cpl_matrix *matrix;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 46 of 70

double *data_buffer;
int number_of_rows = 20;
int number_of_columns = 4;
double value;
...

...
matrix = cpl_matrix_new(number_of_rows, number_of_columns);
...

/* Copy the value of a matrix elements to another location */

value = cpl_matrix_get(matrix, 0, 3);
cpl_matrix_set(matrix, 4, 1, value);
...

/*
* Direct access to the matrix data buffer: the buffer
* always contains double precision values...
*/

data_buffer = cpl_matrix_get_data(matrix);
...
cpl_matrix_delete(matrix);
...
return 0;

}

Currently cpl_matrix supports the following operations with matrices:

� creating different types of matrices, duplicating matrices, etc.,

� reading and writing matrix elements,

� transposing, shifting, removing row/column intervals, and performing any other elementary row/column
operations,

� extracting submatrices, expanding existing matrices, merging of matrices,

� performing arithmetic, computing scalar products, determinants, etc.,

� computing statistical quantities,

� sorting of matrix rows or columns, gaussian elimination, etc.,

� solving systems of linear equations, and,

� inversion.

The methods to support these and other operations are all described in detail in the CPL Reference Manual [4],
but in the following some of the functionalities are explained with the help of one single example, adapted from

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 47 of 70

a higher-level function of the cpl_matrix component, cpl_matrix_leastsq(). This function is used to
solve redundant linear systems, i.e., linear systems with too many equations or too many unknowns.

The theory: given the matrix of the linear system coefficients C, and the non-homogeneous term H, the system

5 �768%:9
is defined, where X is the column matrix of the unknowns. The pseudo-inverse solution of this system is given
by

68%:98� 5<; ���=��>?� 5 � 5<; �@�

where
5 ;

represents the transposed matrix of C, and �A��> the matrix inversion operation. In the following code,
a system of 100 equations in 10 unknowns is solved:

...
#include <cpl_matrix.h>
...
int main()
{

...
cpl_matrix *coeff;
cpl_matrix *t_coeff;
cpl_matrix *nonhomo;
cpl_matrix *solution;
cpl_matrix *m1;
cpl_matrix *m2;
cpl_matrix *m3;
int equations = 100;
int unknowns = 10;
int i, j;
...

/* Creating the coefficient and the non-homogeneous term matrices */

coeff = cpl_matrix_new(equations, unknowns);
nonhomo = cpl_matrix_new(equations, 1);

/*
* The matrices are filled in some way with the appropriate data,
* for instance using the function cpl_matrix_set():
*/

...
cpl_matrix_set(coeff, i, j, value);
...
cpl_matrix_set(nonhomo, i, 1, value);
...

/* Now that the matrices are available we can apply the theory */

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 48 of 70

t_coeff = cpl_matrix_transpose(coeff);
m1 = cpl_matrix_product(coeff, t_coeff);
m2 = cpl_matrix_inverse(m1);
if (m2 == NULL) /* Singular matrix */

return 1;
m3 = cpl_matrix_product(nonhomo, t_coeff);
solution = cpl_matrix_product(m3, m2);

/* Some cleaning... */

cpl_matrix_delete(coeff);
cpl_matrix_delete(nonhomo);
cpl_matrix_delete(t_coeff);
cpl_matrix_delete(m1);
cpl_matrix_delete(m2);
cpl_matrix_delete(m3);

/*
* Here the solution is available and can be used. Finally, also
* the solution matrix is deleted and the program closed:
*/

...
cpl_matrix_delete(solution);
...
return 0;

}

5.2.6 Messaging and logging

A simple component for displaying informative text to terminal and for maintaining logfiles is available in the
CPL. The following operations are supported:

� controlling whether or not messages are written to the terminal and/or to a logfile,

� optionally adding informative tags to messages,

� setting width for message line wrapping,

� controlling the message indentation level, and,

� filtering messages according to their severity level.

Messages may be printed using any of the following functions:

� cpl_msg_debug(),

� cpl_msg_info(),

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 49 of 70

� cpl_msg_warning(), and,

� cpl_msg_error().

Choosing from these functions means assigning a level of severity to a given message. The messaging system
can then be set to display just messages having sufficient severity, choosing a verbosity level from the following
list:

� CPL_MSG_DEBUG,

� CPL_MSG_INFO,

� CPL_MSG_WARNING,

� CPL_MSG_ERROR, and,

� CPL_MSG_OFF.

The highest verbosity level of the messaging system is CPL_MSG_DEBUG. That would ensure that all the mes-
sages are printed. The verbosity would progressively decrease through the levels CPL_MSG_INFO,CPL_MSG_
WARNING, and CPL_MSG_ERROR, where only messages served by the cpl_msg_error() function would
be printed. The lowest verbosity level, CPL_MSG_OFF, would inhibit the printing of any message to the termi-
nal.

To activate and deactivate the messaging system, the functions cpl_msg_start() and cpl_msg_stop()
should be used. These functions will typically be called at the beginning and at the end of a program, and an
attempt to use an uninitialised messaging system would generate an assertion failure. To output the messages to
a logfile, a call to cpl_msg_log_on() is also required, while output to terminal is automatically enabled at
a verbosity level CPL_MSG_INFO; the function cpl_msg_terminal_on() may be used just to modify
this default verbosity.

Three different tags may be attached to any message: time, domain, and component. The time tag is the time of
the printing of the message, and can optionally be turned on or off with the functions cpl_msg_time_tag_on()
and _off(). The domain tag is an identifier of the main program (typically, a pipeline recipe), and can be
optionally turned on or off with the functions cpl_msg_domain_tag_on() and _off(). Finally, the
component tag is used to identify a component of the program (typically, a function), and can be optionally
turned on or off with the functions cpl_msg_component_tag_on() and _off(). However, the com-
ponent tag is always shown when the verbosity level is set to CPL_MSG_DEBUG.

As a default, none of the above tags are attached to messages sent to the terminal, but all the tags are always
shown in messages sent to the logfile. A further tag, the severity tag, can never be turned off. This tag depends
on the function used to print any given message. The tags are prepended to all messages, and are not affected by
the message indentation controlled by the functions cpl_msg_indent(), cpl_msg_indent_more(),
cpl_msg_indent_less(), and cpl_msg_set_indent_step().

The messaging component takes care of adapting long lines of text to the actual terminal width or to a specific
maximum value, adding a new line character at the end of any message. Inserting new line characters would
enforce breaking a line of text even before the current row is filled.

In the following, an illustration of writing messages to terminal and to a logfile is given.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 50 of 70

...
#include <cpl_messaging.h>
...
int main()
{

...
char domain[] = "Example";
char component[] = "messaging";
...

/* Initialising the messaging system. */

cpl_msg_start();
cpl_msg_terminal_on(CPL_MSG_WARNING);
cpl_msg_log_on(CPL_MSG_DEBUG);
cpl_msg_time_tag_on();
cpl_msg_component_tag_on();
cpl_msg_set_domain_tag(domain);
cpl_msg_domain_tag_on();

/* Sending messages both to terminal and to logfile. */

cpl_msg_debug(component, "Log is written to %s", cpl_msg_log_file());
cpl_msg_info(component, "This is message number %d of %d", 2, 4);
cpl_msg_warning(component, "This is a %s message", "warning");
cpl_msg_error(component, "This is the final error message");
...
cpl_msg_stop();

return 0;
}

A complete description of the functions available in the messaging component is given in the CPL Reference
Manual [4].

5.2.7 Error handling

This component provides a means to detect the occurrence of errors, and the supporting of functions to diagnose
or obtain additional information when such errors occur.

A cpl_error_code is set by any CPL function, similarly to what is done with the errno variable of the standard
C library. The following guidelines are respected:

� if no error occurs in a CPL function, the cpl_error_code will remain unchanged, and,

� an error condition in a CPL function will cause the previous cpl_error_code to be overwritten by the new
one.

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 51 of 70

A cpl_error_code equal to the enumeration constant CPL_ERROR_NONE would indicate no error condition.
Note, however, that the cpl_error_code is only set when an error occurs, and it is not reset by successful func-
tion calls. For this reason it may be appropriate in some cases to reset the cpl_error_code using the function
cpl_error_reset() (as shown in the examples below). The cpl_error_code set by a CPL function can
be obtained by calling the function cpl_error_get_code(). Functions of type cpl_error_code would
not only return this code directly, but would also return CPL_ERROR_NONE in case of success. Other CPL
functions return zero on success, or a non-zero value to indicate a change of the cpl_error_code, while CPL
functions returning a pointer would flag an error by returning a NULL.

To each cpl_error_code is associated a standard, human-readable error message, that can be obtained by call-
ing the function cpl_error_get_message(). Conventionally no CPL function will ever display any
error message, leaving to the caller the decision of how to handle a given error condition. A call to the func-
tion cpl_error_get_function() would return the name of the function where the error occurred, and
the functions cpl_error_get_file() and cpl_error_get_line() would also return the name of
the source file containing the function code, and the line number where the error occurred. The function
cpl_error_get_where()would gather all these items together, in a colon-separated string.

The currently available error codes are:

� CPL_ERROR_NONE

No error condition.

� CPL_ERROR_DUPLICATING_STREAM

Cannot duplicate output stream.

� CPL_ERROR_ASSIGNING_STREAM

Cannot associate a stream with a file descriptor.

� CPL_ERROR_FILE_IO

File access failed due to insufficient read or write permission.

� CPL_ERROR_BAD_FILE_FORMAT

An input file did not have the expected format, for instance FITS.

� CPL_ERROR_FILE_ALREADY_OPEN

An attempt was made to open an already open file that should be opened just once, as is the case with the
CPL logfile created by the related CPL messaging functions.

� CPL_ERROR_FILE_NOT_CREATED

An attempt to create a file on disk failed.

� CPL_ERROR_FILE_NOT_FOUND

A file was not found on disk.

� CPL_ERROR_DATA_NOT_FOUND

A component of a valid object was not found (could be a column within a table).

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 52 of 70

� CPL_ERROR_ACCESS_OUT_OF_RANGE

An object was accessed beyond its boundaries.

� CPL_ERROR_NULL_INPUT

A NULL-pointer was received where a valid pointer was expected.

� CPL_ERROR_INCOMPATIBLE_INPUT

Two input arguments were incompatible. This may occur on operations involving multiple datasets (per-
forming arithmetic, merging, etc.).

� CPL_ERROR_ILLEGAL_INPUT

An input argument was illegal, e.g., trying to create a matrix having negative sizes.

� CPL_ERROR_ILLEGAL_OUTPUT

A CPL function generated a return value that would generate an illegal object (as a matrix consisting of
just one element, or a zero length table).

� CPL_ERROR_UNSUPPORTED_MODE

A requested functionality is not actually supported.

� CPL_ERROR_SINGULAR_MATRIX

Matrix inversion was attempted (implicitly or explicitly) with a singular matrix.

� CPL_ERROR_DIVISION_BY_ZERO

An attempt was made to divide by zero, or to perform a division that would lead to numerical overflow.

� CPL_ERROR_TYPE_MISMATCH

An argument had the wrong type for the attempted operation, as in the case of trying to write a numerical
value in a string table column.

� CPL_ERROR_INVALID_TYPE

Data type is not supported.

Here is an example that uses the CPL error functions for detecting and handling possible error conditions coming
from different kinds of functions:

...
#include <cpl_error.h>
#include <cpl_messaging.h>
...
int main()
{

...
cpl_matrix *matrix = cpl_matrix_new(10, 10);
cpl_matrix *inverse;
int start, count;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 53 of 70

cpl_error_code status;
char *message;
char *component;
char *where;
...

/*
* Handle failure of a function returning a valid pointer
* on success, or a NULL in case of failure. The function
* and the standard message associated with the error code
* are retrieved and used.
*/

inverse = cpl_matrix_inverse(matrix);

if (inverse == NULL) {
cpl_msg_error(cpl_error_get_function(), cpl_error_get_message());
return cpl_error_get_code();

}
...

/*
* Handle failure of a function returning 0 (CPL_ERROR_NONE)
* on success and a non-zero error code in case of failure.
* In case of an error a switch may be done on the error code.
* The error-message/warning will display a combination of the
* function name, the file of the source code and its line number.
*/

status = cpl_matrix_delete_rows(matrix, start, count);

if (status != CPL_ERROR_NONE) {

message = cpl_error_get_message();
where = cpl_error_get_where();
component = cpl_error_get_function();

switch (status) {
case CPL_ERROR_ACCESS_OUT_OF_RANGE:

cpl_msg_warning(component, message);
cpl_error_reset();
break;

default:
cpl_msg_error(where, message);
return status;

}

}
...

/*

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 54 of 70

* Handle failure of a function whose return value cannot indicate
* the error status. Here the error-messaging uses separate parts
* for the function name, the file of the source code and its line
* number.
*/

mean = cpl_matrix_mean(matrix);
status = cpl_error_get_code();

if (status != CPL_ERROR_NONE) {
component = cpl_error_get_function();
cpl_msg_error(component, cpl_error_get_message());
cpl_msg_error(component, "at line %u", cpl_error_get_line()) ;
cpl_msg_error(component, "of file %s", cpl_error_get_file()) ;
return status;

}
...
return 0;

}

The few functions to support error handling are all described in detail in the CPL Reference Manual [4].

5.3 Properties

A cpl_property is a name/value pair used for storing meta-data. Although this facility is made available to the
programmer for implementing his or her own data structures, it is expected that the “property list” facility would
be used in most applications requiring this sort of functionality (see Section 5.3.1). Note the difference between
a cpl_property (an atomic variable storage mechanism) and a cpl_plist (which organises and stores complete
sets of associated variables).

The cpl_property supports several different primitive datatypes for the stored value. In particular, all the types
foreseen by the FITS standard for header keywords are provided. A single complex datatype, namely that of
strings, is also available.

As the values of properties are stored in binary form, a property can be used as lossless storage for such named
parameters within the application. This eliminates the concern of loss of information due to conversion to, for
example, text strings, etc..

In addition to the name and value, it is possible to associate a descriptive comment with the property. This
comment could be used to store explanatory text, information about units or whatever is required. Note that
there is no explicit field for the units within the property itself.

5.3.1 Property lists

The property list facility provided by the CPL offers a way to store meta-data as a sequence of name/value
pairs. Although the internals of the cpl_plist make use of the cpl_property type (see Section 5.3), the property

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 55 of 70

list interface completely hides this detail, and allows the user to manipulate his or her data through a single
interface. Thus, unlike parameter lists, it is not possible (or even necessary) to extract/insert properties from the
property list.

The cpl_plist was designed for supporting the FITS header information. Indeed, it is possible, using a single
function, to load a header file into a property list, given the filename and the number of the extension.

To obtain a value from a property list, the list is queried by looking for the value’s name as shown below. New
values can be added to a property list and entries can be erased. But, properties which belong to a property list
exist only as part of this list, i.e. , a property cannot be extracted from a property list.

#include <cpl_plist.h>

...

int main()
{

...

int i, status;
float f;
char *s;

cpl_plist *list;

...

list = cpl_plist_new();

...

cpl_plist_append_int(list, "MyInt", 42);
cpl_plist_append_float(list, "MyFloat", 1.e-6);
cpl_plist_append_string(list, "MyString", "text");

...

i = cpl_plist_get_int(list, "MyInt");
f = cpl_plist_get_float(list, "MyFloat");
s = cpl_plist_get_string(list, "MyString");

...

cpl_plist_delete(list)

...

return 0;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 56 of 70

}

Within the CPL, property lists are used to store the headers of FITS files. The translation from and to a FITS
header is done on the fly.

5.4 Standard data reduction algorithms in libcplbase

The CPL libcplbase library will provide standard astronomical data reduction algorithms in the future. This
library is not yet available.

5.5 The CPL high-level interfaces in libcplui

5.5.1 Frames

A cpl_frame is a way of associating attributes to files. It is used as a communication method between a data
reduction organiser and a data reduction task. Because multiple data files are often required in the processing
of a single observation (dark, flat, bias, target, etc.), it is often necessary to associate these different files for any
data reduction task. The frame component of the CPL makes this possible.

Among the data set attributes are the filename to which the frame is associated, its type, the group to which it
belongs and, if the frame describes a processing product, possibly a processing level.

The cpl_frame component provides the functions to set and query frame attributes, as shown in the example
below:

#include <cpl_frame.h>

...

cpl_frame *add(cpl_image *image1, cpl_image *image2)
{

cpl_frame *product_frame;

cpl_image_add_local(image1, image2);

product_frame = cpl_frame_new();

cpl_frame_set_filename(product_frame, "image12.fits");
cpl_frame_set_tag(product_frame, "ADDED_IMAGE");
cpl_frame_set_type(product_frame, CPL_FRAME_TYPE_IMAGE);
cpl_frame_set_group(product_frame, CPL_FRAME_GROUP_PRODUCT);
cpl_frame_set_level(product_frame, CPL_FRAME_LEVEL_FINAL);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 57 of 70

return product_frame;

}

5.5.2 Frameset

A frameset is just a container for frames. Frames can be added to a frameset and can be looked up by a tag or by
sequentially traversing the container. The frameset is part of the CPL recipe plugin interface (see Section 3.5).
In this context, it is used to pass input files to a data reduction task and obtain the products from it after it has
been completed.

#include <cpl_frameset.h>

...

cpl_frameset *subtract_bias(cpl_image *image, cpl_frameset *set)
{

...

cpl_frame *bias_frame,
cpl_frame *result_frame;

cpl_image *bias = cpl_image_new_double(2048, 4096, NULL, NULL);

...

bias_frame = cpl_frameset_find(set, "BIAS");
bias = cpl_image_copy_from_fits(bias,

cpl_frame_get_filename(bias_frame),
0, 0);

...

result_frame = cpl_frame_new();

...

cpl_frameset_insert(set, result_frame);

...

return set;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 58 of 70

5.5.3 Parameters

A parameter is a datatype with an associated name, description and value-checking. Parameters are designed to
handle monitor/control data and they provide a standard way to pass for instance command line information to
different components of an application.

The implementation supports three classes of parameters: a plain value, a value within a given range, or an value
as part of an enumeration. When a parameter is created it is created for a particular value type. In the latter two
cases, validation is performed whenever the value is set.

The type of a parameter’s current and default value may be: boolean, integer, double or string.

In addition to the name, parameters provide an associated context. Parameter names must be unique — they
define the identity of a given parameter. The context is used to associate parameters together. A context, for
example, may be the name of the part of the application, from where the parameter value originated.

Parameters were designed to be used by the PDRM interface, as a method of passing command data between a
host application and a recipe.

Parameters vary from properties, in that they have these associated data constraints and additional descriptive
parameters. While properties are primitive units of data storage without any overhead, parameters offer self-
description and data integrity checking which are essential for dealing with interfaces within the application.

Parameters may be grouped using the "parameter list" component. A parameter list, cpl_plist, is simply a mech-
anism for grouping lists of parameters. It provides a convenient way for passing large numbers of parameters to
a function. For instance, it is used in the plugin interface to pass the parameters a recipe accepts from the plugin
to the calling application and vice versa.

Unlike the relationship between properties and property lists, it is possible to extract/insert parameters within
parameter lists.

For a complete documentation of the parameter component please refer to the CPL Reference Manual [4].

#include <cpl_parameter.h>
#include <cpl_parlist.h>

...

cpl_parlist *make_parameter_list(int i, double d, const char *s)
{

cpl_parlist *plist = cpl_parlist_new();
cpl_parameter *p;

p = cpl_parameter_value_new("config.integer_value",
CPL_TYPE_INT,
"An integer value",
"config",
0);

cpl_parameter_set_int(p, i);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 59 of 70

cpl_parlist_append(plist, p);

p = cpl_parameter_range_new("config.double_range",
CPL_TYPE_DOUBLE,
"An range of doubles",
"config",
0.5, 0., 1.);

cpl_parameter_set_double(p, d);
cpl_parlist_append(plist, p);

p = cpl_parameter_enum_new("config.string_enum",
CPL_TYPE_STRING,
"An enumeration of strings",
"config",
"one", 3, "one", "two", "three");

cpl_parameter_set_string(p, s);
cpl_parlist_append(plist, p);

return plist;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 60 of 70

A Memory model description

In principle, the same memory handling functions should be used everywhere in a piece of software. The actual
rule is that all memory allocated with a given model has to be deallocated using the same one.

If the CPL is used in your code, all the memory returned by CPL functions must be de-allocated with an
xmemory deallocation function. For all CPL objects allocated/returned by CPL functions, a destructor is
provided. Using a CPL function to de/allocate memory ensures that the xmemory model is used.

Example:

cpl_image *img;

/* Image allocated by a CPL function (with the xmemory model) */
img = cpl_image_new_float(1024, 512);
...

/* Image deallocated by a CPL function (with the xmemory model) */
cpl_image_delete(img);

In the cases where a CPL function returns a newly allocated array, you may be tempted to use a simple free()
call to deallocate the array, which would be a mistake; you must use the xmemory model freeing function (see
Problem 1).

Problem 1:

cpl_image *obj;
double *values;

/* Values allocated by a CPL function (with the xmemory model) */
values = cpl_image_get_values(obj);
...

/* Values deallocated (without the xmemory model) */
free(values); /* ERROR! */

To avoid any problems, the easiest solution is to make sure that the xmemory functions are used everywhere in
your code.

To do that, there are two solutions:

Solution 1: You just have to include xmemory.h in your source files to make sure that your calls to allocation
functions will be, in reality, calls to the xmemory functions. In this case, the process is completely invisible,
and you can continue to use malloc(), etc., without thinking any more about memory allocation problems.

Problem 1 solved with Solution 1:

#include "xmemory.h"
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 61 of 70

cpl_image *obj;
double *values;

/* Values allocated by a CPL function (with the xmemory model) */
values = cpl_image_get_values(obj);
...

/* Values deallocated (with the xmemory model: free is overloaded) */
free(values);

This solution has the following limitation: if you are using an external C library (other than the CPL) that
allocates some memory for you, you have to make sure not to use the xmemory functions to deallocate it. In
this case, you may want to go for the Solution 2.

Problem 2 not solved by Solution 1:

#include "xmemory.h"
...
cpl_image *obj;
ext_image *ext_obj;
double *values;
double *ext_values;

/* Values allocated by a CPL function (with the xmemory model) */
values = cpl_image_get_values(obj);

/* ext_values allocated by an ext. lib. (without the xmemory model) */
ext_values = ext_lib_get_values(ext_objs);
...

/* Values deallocated (with the xmemory model: free is overloaded) */
free(values);

/* ext_values deallocated (with the xmemory model: free is overloaded) */
free(ext_values); /* ERROR! */

Solution 2: This solution is to be used in cases where you have to distinguish the data allocated in external
libraries from the rest. In this case, you can avoid the standard memory function overloading by including the
Common Pipeline Library memory handling interface defined in cpl_memory.h, and using the functions
cpl_malloc(), cpl_realloc(),cpl_calloc() and cpl_free() (using the xmemory model) ev-
erywhere in your code, reserving the functions free(), malloc(), etc., for handling standard allocated
memory coming from these external libraries.

Problem 2 solved by Solution 2:

/* #include "xmemory.h" */
#include "cpl_memory.h"
...

cpl_image *obj;

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 62 of 70

ext_image *ext_obj;
double *values;
double *ext_values;

/* Values allocated by a CPL function (with the xmemory model) */
values = cpl_image_get_values(obj);

/* ext_values allocated by an ext. lib. (without the xmemory model) */
ext_values = ext_lib_get_values(ext_obj);
...

/* Values deallocated (with the xmemory model : through the CPL call) */
cpl_free(values);

/* ext_values deallocated (without the xmemory model) */
free(ext_values);

This solution would allow you to deallocate both kind of allocated objects.

It can still happen that CPL objects are built with the ad-hoc constructor and an external allocated array. This
would result in a CPL object for whom a part has been allocated with the memory model and another part with
the default allocation functions.

Problem 3:

#include "cpl_memory.h"
...

ext_image *ext_obj;
double *ext_values;
cpl_matrix *m;

/* ext_values allocated by an ext. lib. (without the xmemory model) */
ext_values = ext_lib_get_values(ext_objs);

/* A CPL matrix is built using this array (with the memory model) */
m = cpl_matrix_new_from_data(ext_values, 5, 5);
...

/* Delete the matrix with the CPL destructor (with the memory model) */
cpl_matrix_delete(m); /* ERROR! */

Solution 3: In this particular case, a special CPL object destructor must be used. This must have the ability to
destroy only the object but not the data it contains. These data must be deallocated without using the memory
model (in the same way that they have been created).

Problem 3 solved by Solution 3:

#include "cpl_memory.h"
...

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 63 of 70

ext_image *ext_obj;
double *ext_values;
cpl_matrix *m;

/* ext_values allocated by an ext. lib. (without the xmemory model) */
ext_values = ext_lib_get_values(ext_objs);

/* A CPL matrix is built using this array (with the memory model) */
m = cpl_matrix_new_from_data(ext_values, 5, 5);
...

/* Delete the matrix not the data (with the memory model) */
cpl_matrix_delete_but_data(m);

/* Delete the data (without the xmemory model) */
free(ext_values);

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 64 of 70

B The PDRM source code

This appendix provides the complete source of the PDRM example discussed in 3.5.

#include <cpl_memory.h>
#include <cpl_recipe.h>
#include <cpl_plugininfo.h>
#include <cpl_parameter.h>
#include <cpl_parlist.h>

/* For the my_image_arithmetics prototype */

#include "my_image_arithmetics.h"

#define MY_PLUGIN_VERSION 1

/*
* Plugin detailed description
*/

static const char *
myplugin_help = "The plugin adds, subtracts, multiplies or divides "

"two images depending on the operation choosen by the "
"parameter ‘operation’.";

/*
* Forward declarations of the initalization, execute and
* cleanup handlers
*/

int myplugin_create(cpl_plugin *);
int myplugin_exec(cpl_plugin *);
int myplugin_destroy(cpl_plugin *);

int
cpl_plugin_get_info(cpl_pluginlist *list)
{

cpl_recipe *recipe = cpl_calloc(1, sizeof *recipe);
cpl_plugin *plugin = (cpl_plugin *)recipe;

cpl_plugin_init(plugin,
CPL_PLUGIN_API,
MY_PLUGIN_VERSION,
"myplugin",

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 65 of 70

"Do basic arithmetics on two images",
myplugin_help,
"Gill Bates",
"gbates@macrohard.com",
"GPL",
myplugin_create,
myplugin_exec,
myplugin_destroy);

cpl_plugin_list_append(list, plugin);

return 0;

}

static int
myplugin_create(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;
cpl_parameter *p;

recipe->parameters = cpl_parlist_new();

p = cpl_parameter_enum_new("myplugin.operation",
CPL_TYPE_STRING,
"Arithmetic operation to apply.",
"myplugin",
"add", 4,
"add", "subtract", "multiply", "divide");

cpl_parameter_set_alias(p, "op", NULL, NULL);
cpl_parlist_append(recipe->parameters, p);

return 0;

}

static int
myplugin_exec(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

return my_image_arithmetics(recipe->parameters, recipe->frames);

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 66 of 70

static int
myplugin_destroy(cpl_plugin *plugin)
{

cpl_recipe *recipe = (cpl_recipe *)plugin;

cpl_parlist_delete(recipe->parameters);

return 0;

}

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 67 of 70

C Comment conventions

Each file in the library begins with a header containing information about the file, such as the file version, the
file author, what is contained in the file, etc..

Here is a template of what is put at the head of each .c source file in the library:

/* $Id: conventions.tex,v 1.17 2003/12/15 16:03:06 dmckay Exp $
*
* This file is part of the ESO Common Pipeline Library
* Copyright (C) 2001-2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

/*
* $Author: dmckay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include ...
#define ...

/**
* @defgroup <grouptag> <module name>
*
* [Module description]
*
*/

/**@{*/
/* The function code is placed here */
/**@}*/

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 68 of 70

Here is a template that should be filled and put at the head of each .h source file in the library:

/* $Id: conventions.tex,v 1.17 2003/12/15 16:03:06 dmckay Exp $
*
* This file is part of the ESO Common Pipeline Library
* Copyright (C) 2001-2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

/*
* $Author: dmckay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
*/

#ifndef TEMPLATE_H
#define TEMPLATE_H

#include <cpl_macros.h>
#include ...
#define ...

CPL_BEGIN_DECLS
/* The function declarations are placed here */
CPL_END_DECLS

#endif /* TEMPLATE_H */

The fields Id, Author, Date and Revision are automatically filled by the configuration control system CVS.

The functions are themselves documented using the following template that has to be filled and put just before
the function:

/*---*/
/**

@brief

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 69 of 70

@param
@param
@return

*/
/*---*/

Online documentation may then be generated using doxygen.

The functions must be documented in the .c file. Function documentation must contain information about the
function interface (how to call it, what to expect, where to use it, ...) and information about how the function
has been written (algorithm used, has it been optimised, ...).

As an example, here is a very simple .h file, which illustrates the conventions described above.

/* $Id: conventions.tex,v 1.17 2003/12/15 16:03:06 dmckay Exp $
*
* This file is part of the ESO Common Pipeline Library
* Copyright (C) 2001-2003 European Southern Observatory
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

/*
* $Author: dmckay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
*/

#ifndef CPL_IMAGE_H
#define CPL_IMAGE_H

/*---
Includes

---*/

#include <stdio.h>
#include <string.h>
#include <cpl_macros.h>

ESO Common Pipeline Library
User Manual

Doc: VLT–MAN–ESO–19500–2720
Issue: Issue 1.0
Date: Date 2003–12–15
Page: 70 of 70

CPL_BEGIN_DECLS

/*--*/
/**

@brief The cpl image structure.
*/

/*--*/
typedef struct _cpl_image_ {

/* Size of the image in x and y */
int nx, ny ;
/* Type of the pixels used for the cpl_image */
cpl_type type ;
/* Pointer to pixel buffer as a 1d buffer */
void * pixels ;
cpl_sparseimage * badpixelmap ;

} cpl_image ;

/*---
Function prototypes

---*/

/* Image constructors */
cpl_image * cpl_image_new_empty(void) ;
cpl_image * cpl_image_new_double(const int, const int) ;
cpl_image * cpl_image_new_float(const int, const int) ;
cpl_image * cpl_image_new_int(const int, const int) ;
cpl_image * cpl_image_new_bin(const int, const int) ;
cpl_image * cpl_image_load_float(const char *, const int, const int) ;
cpl_image * cpl_image_load_double(const char *, const int, const int) ;
cpl_image * cpl_image_load_int(const char *, const int, const int) ;

...

CPL_END_DECLS

#endif
/* end of cpl_image.h */

