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In which some options for non-linearity correction and its measurement are explored.

Correcting for non-linearity

In default DSC reset-read-read (RRR) mode, downstream of the data aquisition sys-
tem (DAS) the output that we see is

∆I ′ = I ′2 − I ′1 = f(I2)− f(I1)

where I ′1 and I ′2 denote the non-linear first (ie. the reset-frame) and second readouts
respectively and I1 and I2 the desired linear quantities. The non-linear function f(I)
maps the distortion of the desired linear counts to the non-linear system I ′. If we
define the inverse transform g(I ′) that maps measured counts I ′ to linearised counts
I as the inverse operator g() = f−1() then

I = g(I ′) and I1 = g(I ′1) I2 = g(I ′2)

If I ′1 and I ′2 were directly available this is a one-to-one mapping and can be done
efficiently and accurately using Look Up Tables (LUTs). This is the conventional
way of implementing the correction prior to other image manipulation operations.

However, if I ′1 and I ′2 are not separately available and all we have to work from is the
difference ∆I ′ then a simple LUT transformation is not possible.

For example, taking the simplest case where the illumination level across the detec-
tor has not changed during the course of the RRR and no on-board co-addition is
happening then, in principle given only ∆I and knowledge of the timing of the RRR
operations we can deduce I1 and I2 by using the effective integration time for each to
estimate their scaling to the measured difference ∆I such that,

I1 = k∆I and I2 = (1 + k)∆I

Unfortunately, the ratio k will not be constant for the non-linear quantities I ′1 and I ′2
forcing us to adopt a scheme along the following lines.

Given ∆I ′ and defining the non-linear operator f() as a polynomial with coefficients
am (typically up to quartic) we have

∆I ′ =
∑
m

am(Im
2 − Im

1 ) =
∑
m

am[(1 + k)m∆Im − km∆Im]
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The quantity we want ∆I is buried in the non-linearity of the RHS and we have to
solve an equation like this for every pixel. This is possible, and relatively simple to
program using something like a Gauss-Seidel iterative scheme, but is more inefficient
than a direct mapping. 1

If we wanted to use a completely general LUT approach we would require a 2D LUT
for all possible values of I1 and I2 ie. 65k × 65k in size, or 4.3×2 Gbytes. Most
likely we would need a different correction for each “channel” making a total of 128
(WFCAM) or 256 (VISTA) × 8.6 Gbytes = 1.1 or 2.2 Tbytes of LUT for the cameras!
Of course if the range of values of k is limited via exposure time quantisation this
decreases the size of the total no. of LUTs required considerably for the constant
illumination case, but would be an ugly and possibly impractical solution.

Practical considerations (eg. data volume), suggest two alternative solutions for non-
linearity correction: either correct the individual frames directly in the DAS by mea-
suring and downloading the appropriate LUTs, or polynomial coefficients, to the
DAS; or use a non-linear inversion on the reset-corrected frames as outlined here.
This methodology is not generally applicable, eg. to multi-NDR/gradient fitting
readouts, but is directly applicable to coadded (or coaveraged) frames of the same
exposure times, assuming constant illumination over the series.

For reset-corrected data, the non-linear inversion is competitive with complex opera-
tions on LUTs and much simpler to implement. It also has the added advantage of
removing all aspects of the non-linearity correction from the DAS. The main disad-
vantages are the method is restricted to DCS RRR mode, and if the illumination level
is rapidly varying (eg. twilight) the effective scale factors ki may be hard to compute
accurately - although for all realistic practical situations the knock-on effect is likely
to be negligible.

Measuring the non-linearity

If all that is available are reset-corrected data from say a time series of dome flats, it
is still feasible to directly compute the non-linearity coefficients.

Given a series of measurements {i} of ∆I ′i and using the previous notation and poly-
nomial model

∆I ′i =
∑
m

am(Im
2 − Im

1 ) =
∑
m

am∆Im
i [(1 + ki)

m − km
i ]

where ki are the exposure ratios under the constant illumination.
In general ∆Ii = s ti where ti is the exposure time of the ith reset-corrected frame in
the series and s is a fixed (for the series) unknown scale factor. The ki are computable
from a knowledge of the exposure times and the reset-read overhead, ti and ∆I ′i are
measured quantities leaving the polynomial coefficients am and the scaling s to be

1A simulation on a twin processor 3GHz Xeon PC indicates, for typical values, a time of ≈1/8th
second per 2k × 2k detector.
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determined.

Thus the model is defined by

∆I ′i =
∑
m

am(Im
2 − Im

1 ) =
∑
m

am sm tmi [(1 + ki)
m − km

i ]

and can be readily solved by standard linear least-squares methods using the following
sleight-of-hand. Since the scaling s and hence the polynomial solution am are coupled,
by simply (and logically) requiring in the final solution a1 = 1, computation of s can
be completely avoided.

Rewriting the previous equation in the following form makes this more apparent

∆I ′i =
∑
m

(am sm) tmi [(1 + ki)
m − km

i ] =
∑
m

bm tmi [(1 + ki)
m − km

i ]

where now bm are the coefficients to be solved for. The final step is to note that

am = bm/sm = bm/b m
1

since by definition a1 = 1.

Individual frames available

If both reset and data frames are available then the problem is much simpler since it
can be phrased in the following way

I1 =
∑
m

am I ′1
m = s t1

I2 =
∑
m

am I ′2
m = s t2

where t1 and t2 are the known effective exposure times. Given a series of measurements
{i} these can either be solved as a coupled pair of linear least squares minimisations
or by forming

∆t =
∑
m

am/s (I ′2
m − I ′1

m)

as a standard linear least-squares problem. Again the requirement that a1 = 1 au-
tomatically defines s. These coefficients can then be directly applied to the observed
flux to give the desired linearised units.
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Summary

There are two general options for non-linearity correction. The first is to compute
and apply the non-linearity correction on individual readouts, preferably in the detec-
tor controller system, for data volume considerations, prior to computing the reset-
corrected frames. The second method forgoes direct access to the individual frames
and instead computes and applies the non-linearity correction at the front-end of the
VDFS pipeline.

Each option has certain advantages and disadvantages. The former method is more
complex from an operational point-of-view since the non-linearity measures will need
to be computed using a different readout mode to that in normal use and then fed
back to the controlling system for application. Leaving the non-linearity operation for
the pipeline simplifies the operational aspects but makes various (not unreasonable)
assumptions about the timing of reset and readout operations and the stability of the
illumination.

The only clear drawback of correcting post-facto is that it would probably be very
difficult, if not impossible, to correct multiple NDR gradient fitting output that way.
It is not obvious that this is a problem for VISTA, or WFCAM, since an adequate
alternative for narrow-band imaging is simply to integrate for long enough to get a
signal dominated by sky background and stick with the DCS RRR mode.
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