Explanations to install, compile and run $ME(SSY)^{**2}$

Marc Freitag

July 17, 2008

1 Preamble

This file and the codes it describes should be available at the url

http://www.ast.cam.ac.uk/research/repository/freitag/MODEST_MonteCarlo/MESSY_Download.html.

1.1 References

ME(SSY)**2 stands for "Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems"¹. This name also conveys something of the programming style I used... Note that ME(SSY)**2 is just the "commercial name" but, traditionally, since I started developing this code in 1995 or 1996, the executable is called evolamas (something like "evolve cluster" in French) and the main source file is EvolAmas.F.

The physical and algorithmic principles underlying $ME(SSY)^{**2}$ are described in:

- Freitag, M. & Benz, W. 2001, A New Monte Carlo Code for Star Cluster Simulations: I. Relaxation, A&A, 375, 711 http://uk.arxiv.org/abs/astro-ph/0102139 http://dx.doi.org/10.1051/0004-6361:20010706
- Freitag, M. & Benz, W. 2002, A New Monte Carlo Code for Star Cluster Simulations: II. Central Black Hole and Stellar Collisions, A&A, 394, 345
 http://uk.arxiv.org/abs/astro-ph/0204292
 http://dx.doi.org/10.1051/0004-6361:20021142

The code has been used in the following refereed papers: Freitag (2001); Freitag & Benz (2001, 2002); Freitag (2003); Freitag et al. (2006c,b,a). The code is based on the scheme pioneered by Michel Hénon in the 70s to follow the evolution of globular clusters (Hénon 1971a,b; Hénon 1973; Hénon 1975). For some general information on Hénon-type Monte-Carlo (MC) codes, see my slides for the "Cambody" summer school: http://www.cambody.org/index.php?page=notes (the slides on Fokker-Planck methods are useful to understand the treatment of 2-body relaxation). As a follow-on of this school, a book on collisional stellar dynamics is "in the making". My chapters on MC and Fokker-Planck approaches can be found at http://www.ast.cam.ac.uk/~freitag/Cambody/Book/share/. I have also written a couple of web pages on MC techniques for the MODEST² web site: http://www.ast.cam.ac.uk/~freitag/MODEST_ MonteCarlo/intro.html. There you will find more references but it is a bit outdated as I haven't changed anything there since early 2004.

1.2 License and use of Numerical Recipes routines

ME(SSY)**2 should be free and open. It is distributed under an MIT license (see appendix A). Unfortunately it relies on the use of some routines taken from "The numerical recipes in Fortran" which you can only use if you have bought them, I think. See http://www.nr.com/ and http://www.numerical-recipes.com/com/storefront.html. I should try to find open and free alternatives to these routines. For the time being, they are in files whose names and with _NR.f or _NR.F, which are not distributed with ME(SSY)**2. The routines used are:

¹Name suggested by Pau Amaro-Seoane.

² "MOdeling Dense STellar systems", see http://www.manybody.org/modest/.

covsrt dawson dfridr erfcc gammln gaussj hunt indexx lfit locate midinf midpnt midsql odeint polint gromb gromo gsimp rkck rkgs rtsafe selip shell spline trapzd zriddr

The have all been adapted to the use of double precision floating-point number (instead of real). Furthermore, ME(SSY)**2 also uses a modified verion of rtsafe, rtsafe_rel which has the following interface:

double precision function rtsafe_rel(funcd,x1,x2,xacc_rel)

xacc_rel is the required relative accuracy of the root determination. I.e. you need to use a test of the following
sort:

if (abs(dx).lt.(xacc_rel*abs(rtsafe_rel)+1.0d-20)) then

at the appropriate place ;-)

1.3 Very quick overview

ME(SSY)**2 evolve star cluster models. The code is based on the following set of core assumptions:

- Spherical symmetry (hence no rotation, flattening, triaxiality, etc).
- Dynamical equilibrium (no violent relaxation, etc).
- Diffusive relaxation. The 2-body relaxation is treated in the Chandrasekhar approximation by assuming that it amounts to the effects of a large number of uncorrelated, small-angle 2-body encounters, each of which is a Keplerian hyperbolic deflection.

As of November 2006, the physics included is:

- Self-gravity of the cluster.
- 2-body diffusive relaxation.
- Simple stellar evolution. The stars do not evolve on the MS. At the end of their MS lifetime, they turn into compact remnants.
- Stellar collisions. One can inter- or extrapolate from a large database of SPH simulations (Freitag & Benz 2005).
- Large-angle 2-body encounters ("kicks"). Those are supposed to be negligible in most circumstances but it was easy to include into the code.
- A central massive object (generally thought to be a (I)MBH). It is considered fixed at the centre. It interacts with the stellar system through:
 - Contribution to potential.
 - Tidal disruptions.
 - Direct plunges through horizon.
 - "Extreme mass-ratio inspiral" due to emission of gravitational waves. This process might not be treated accurately enough in the present implementation.
- Tidal truncation of the cluster (condition on apocentre distance).

Regrettably, at this point $ME(SSY)^{**2}$ does not include

- Giant stars (or any detailed stellar evolution).
- Binaries.
- Detailed treatment of tidal effects such as variable tidal field, delayed evaporation (Fukushige & Heggie 2000; Baumgardt 2001), disk and bulge shocking.
- Effects of gas (contribution to potential, accretion onto stars or the MBH, effects of gas removal from young clusters).

1.4 Units

In most places (in particular for input and output), ME(SSY)**2 uses so called N-body units (Hénon 1971b; Heggie & Mathieu 1986). I define the unit system such that the constant of gravity is G = 1, the total *stellar* mass is initially $M_{\rm cl}(0) = 1$, and the total initial *stellar* gravitational energy (not accounting for the contribution of the MBH to the potential) is -1/2 (Freitag & Benz 2001; Freitag et al. 2006a). As a time unit, I use the "Fokker-Planck time" $T_{\rm FP}$ which is connected to the N-body time unit $T_{\rm NB}$ through $T_{\rm FP} = (N_*(0)/\ln \Lambda)T_{\rm NB}$ were $N_*(0)$ is the initial number of stars and $\ln \Lambda = \ln(\gamma N_*(0))$ the Coulomb logarithm (Binney & Tremaine 1987; Spitzer 1987). I prefer to use $T_{\rm FP}$ rather than $T_{\rm NB}$ because the former is a relaxation time while the latter is a dynamical time. Individual stellar masses and radii (important for stellar evolution and collisions) are in M_{\odot} and R_{\odot} , respectively.

2 Installing ME(SSY)**2

2.1 Use of xdr format

For historical reasons³ (FHR), I used some portable binary format called xdr for the large snapshot files containing the particle data, in particular the initial condition file(s). One has to download and install the fxdr fortran xdr library, to be found at http://meteora.ucsd.edu/~pierce/fxdr_home_page.html. This is generally straightforward to install. My make files assume the library libfxdr.a is put in \$HOME/lib and the include file fxdr.inc in \$HOME/include.

I can provide various codes to convert to/from xdr files. In practice, you will need some code to write the initial condition file(s) in xdr format as ME(SSY)**2 is not able to generate its own initial cluster model (this is a feature ;-)). You will need to be able to read the xdr snapshot only if you want to know about the properties of individual particles. ME(SSY)**2 also outputs a lot of information in ASCII files to follow overall or statistical properties of the cluster, such as Lagrange radii or interesting events such as collisions.

2.2 Compiling the code

The code is written in more or less standard fortran-77. It is spread over a large number of files (153 and counting). The main file is EvolAmas.F and most other files have a name starting with EvolAmas_. The extension .f is for plain fortran files while .F files contain pre-processor directive allowing to customise the code at compile time. Most pre-processor variables are set in the make file EvolAmas.mke. The file Machine_Dependent.F contains all subroutines that might cause a problem when porting from one architecture to another or from a compiler to another. Their name end with _MD. In general, files whose names end with _inc.f are include files, i.e., they are "incorporated" into other files through the "include" command. Names ending with _param.f and _common.f contain definitions of parameters (aka constants) and common blocks that are included in several places.

I highly recommend to use GNU tools. In particular the GNU make and the the GNU fortran compiler g77 or the more recent gfortran. I was able to compile the code on Solaris, various GNU/Linuxes PCs and Mac OSX. Long time ago, I was successful using the Solaris fortran compiler, the Portland group compiler (on PCs), and the Intel compiler (on PCs). But I now stick to gnu compiler and EvolAmas.mke probably only works for g77 (if at all!). Note that the make file might not work with non-GNU versions of make and that it needs the Z shell zsh to be installed (its path is set via the variable SHELL at the beginning). Another reason why you need zsh is that it is used by the scripts mke2list_preproc_defines.sh and CreateFortranPrintCodeForListPreprocDefines.sh called by the makefile. These scripts are called to write some fortran routine which will print out the values of most (all?) precompiler variables in CaracCode.asc when ME(SSY)**2 is run.

If you are lucky, compiling $ME(SSY)^{**2}$ is as easy as

%make -f EvolAmas.mke

where % indicates the prompt. This should create the executable <u>__evolamas__</u> which you can happily rename to, say, evolamas. However many aspects of what the code will do, in particular the included physics, have

 $^{^{3}}$ The goal was to avoid "endianness" problems when transferring files from, say, Solaris workstations to PCs. But a more widely used and better supported format such as FITS or compressed ASCII would have been preferable.

to be decided before compilation as they are controlled by pre-processor variables. In Table 1, I list the preprocessor variables that are set in EvolAmas.mke through the -D switch of the compiler. For instance, the variable _ECRIT_ETOILES_ is set to 1 in through -D_ECRIT_ETOILES_=1. Not all pre-processor variables are set in EvolAmas.mke. Some are (re)set in various .F files using the pre-processor "#define" directive. As a general rule, only the pre-processor variables with a leading "*" in Table 1, should be tinkered with. Note that many of them determine what kind of information is output. See § 3.2 and Table 5 for more information about ME(SSY)**2's rich output.

Before compiling, you should also set the parameter iDimSE in Param_Amas.f to a value large enough to accommodate your number of particles. iDimSE is the size of arrays containing the particles' data; it can be larger than the number of particles you will use (this might or might not result in more memory usage than required).

3 Running ME(SSY)**2

3.1 Input files and parameters

This is where the fun begins! Over the years, $ME(SSY)^{**2}$ has grown quite complex but I always tried to preserve compatibility with the data and parameter files of the previous versions. As a results, the input and output data are scattered in more files (and using more formats) that is really comfortable! Table 2 shows a list of input files, i.e., files containing initial conditions (the structure of the cluster at t = 0) or parameters to set the physics or affecting the numerics. Note that only a very few are compulsory for $ME(SSY)^{**2}$ to run. The others can be used to override the default physics and numerics.

In Table 3, I list files that can be used for some (limited) real-time control of the run, such as requesting a "snapshot" (saving all particle data to disk) or an early termination. Most importantly, there is a Perl script, gere_evolamas.pl which is driver for the fortran executable evolamas.

3.1.1 The main parameter file (aka input_EvolAmas)

This is the most important file to set nearly all physical and numerical parameters. If one uses gere_evolamas.pl to drive the run, the script will look for a file named input_EvolAmas containing parameters and comments, and format it for evolamas. In this case one can include blank lines and anything starting with # is considered a comment. If gere_evolamas.pl is not used, the format is more strict (see below) and the preferred way to pass the parameters is by using the command:

%./evolamas -f my_parameter_file

where my_parameter_file is your parameter file (no kidding!). For simplicity, we will assume it is called input_EvolAmas. The stricter format for input_EvolAmas accepted by evolamas is something like that:

```
Param_name_1 # Some comments if you like
    Param_value_1
Param_name_2
    Param_value_2 # More comments if you please
Param_name_3
    Param_value_3
```

This will give the value Param_value_1 to the variable Param_name_1 and so on. Note that one or more white space must appear before the value of a parameter and none before its name. In principle # is not required before a comment as only the first "word" of each line will be read anyway! evolamas will complain and stop if it doesn't recognise the name of a parameter. If you are using gere_evolamas.pl, you can change the value of parameters on the command line:

%./gere_evolamas.pl --option Param_name_1=Param_value_1 --option Param_name_2=Param_value_2

If you use the switch --Print with gere_evolamas.pl, it will just output on stdout a cleaned-up version of the parameter file but not run evolamas. This is useful for systems where you cannot drive the code with such a script (such as a PC cluster using some queue submission software) but you still want gere_evolamas.pl to prepare a nice parameter file for you.

It should be noted that the code will try to start with the snapshot files (MyRun%xxxxxxx%AMAS.xdr, etc) corresponding to the step number given by the parameter i_ini (value of "xxxxxxxxx")⁴. Hence, if you want to (re)start from t = 0 set i_ini to 0. If you want to continue a simulation interrupted at some step n (with existing corresponding snapshot files), set it to n. gere_evolamas.pl will not allow you to run a simulation in a directory where there are already snapshot files for a step number larger than 0 unless you use the switch --Force to force restart from scratch or --Continue to continue from the last snapshot in which case you don't have to set i_ini manually.

Note that it is important that the number of digits in "xxxxxxxx" be exactly 10 (ten, dix, sepuluh). The code is too dumb to find the input file(s) if they do not follow this convention!

3.1.2 Initial condition files

The file MyRun%00000000%AMAS.xdr is one of the very few which is compulsory it contains the initial cluster structure, particle by particle. This data is the mass M, radius R, (specific) kinetic energy E and modulus of (specific) angular momentum J for each particle. These data are stored in the arrays M_SE, R_SE, T_SE and J_SE in a common bloc (defined in VarSE.f)⁵. N-body units are to be used for all these data.

In most cases, you will also need a file MyRun%00000000%ETOILES.xdr containing the basic stellar properties of the stars of each particle, its mass M_* (in M_{\odot}), type and "date of birth" (in yr, since t = 0). The mass information is redundant with that in MyRun%000000000%AMAS.xdr since $M_* \propto M$ but when more detailled stellar evolution will be included, M_* will probably refer for the "zero-age" mass while M will track mass loss. The date of birth is generally when the star acquirred its present type but may be modified in collisions to account for "rejuvanation" (mixing in MS stars). It is used to determine the current (effective) evolutionary age. There are currently for stellar types: 1, 3, 4, 5 for MS, WD, NS and BH; no giant phase!. These data are stored in the arrays Met_SE, (stellar mass) DNet_SE, (birth date) iTet_SE (stellar type) in a common bloc (defined in VarSE.f). The numerical type of iTet_SE is byte. All other arrays are real*8 (aka double precision).

Typical usable number of particles range from 10^5 to 10^7 . $10^3 - 10^5$ can be used for test runs. It is important to insist on the fact that the number of stars is completely independent of the number of particles (unlike in other current Hénon-type MC codes). The number of stars is given by the parameter rNbEtoiles in input_EvolAmas.

The easiest way to get initial condition files is to ask me! The next easiest way is to use some of my programs to generate initial conditions:

• Creer_Amas_FdeE.F can create AMAS.xdr according to a variety of theoretical models: Plummer, King, Wooley & Dickens (not tested), Isochrone, Dehnen with $\gamma = 0, 1, 2$, and stellar polytropes (Binney & Tremaine 1987; Dehnen 1993). No central object can be included. Which model will be generated (as well as what type of parameters have to be entered) depend on the value of the pre-processor variable _TYPE_ (see source file). When compiled for Plummer models, and called "create_plummer", the command-line syntaxe is

%create_plummer -N 1000000 -Name MyPlummer [-iseed 763367]

to create a file MyPlummer.xdr containing one million particles. The option -iseed can be used to impose a different seed for the random number generator. When compiled for King models, and called "create_king", the command-line syntaxe is

```
%create_king -N 1000000 -Name MyKing -W 8 [-iseed 763367]
```

were -W is used to give the value of the dimensionless central potential W_0 . In this case a tiny file MyPlummer_MAREE.xdr is also created to indicate the value of the tidal radius.

• Creer_Amas_EtaTN.F can create "eta-models" (Dehnen 1993; Tremaine et al. 1994) with or without a central mass. This includes Hernquist and Jaffe models. The syntaxe is

⁴One step correspond to the modification of just one pair of particles. Therefore the step number can reach billions.

 $^{{}^{5}}$ SE comes from "Super-Étoile" the French for "super star" as it is how Hénon used to call particles to stress the fact that they may represent more than one star each.

%create_eta -N 1000000 -Name MyEta -eta 1.5 -mu 0.03 [-iseed 763367]

where -eta if for the parameter η (the density at small radii is $n \propto R^{\eta-3}$) and -mu is for the parameter μ , the mass of the central object (in units of the total stellar mass, so the total mass of the system is $1 + \mu$). If $\mu > 0$, a file MyPlummer_TN.xdr is created to contain the value of the mass of the central object.

These models will have no mass spectrum (and no ETOILES.xdr file). To introduce a mass spectrum and create the corresponding ETOILES.xdr file, one can use AppliquerFM3.F (sorry for the name!) which allow to apply any initial mass function that can be represented as a piecewise power-law (see Appendix A2 of Freitag & Benz 2002). Explanations about usage are given in the source code. For a Kroupa IMF, you would do

%appliquerfm3 -m "0.01,0.08,0.5,150" -a "0.3,1.3,2.3" MyModel MyModel_WithMF

so -m gives the list of limit-masses, -a the list of exponents (2.35 is Salpeter), MyModel the base name of the input model without mass function and MyModel_WithMF the base name of the output model. At the minimum files MyModel_WithMF.xdr and MyModel_WithMF_ETOILES.xdr will be created. The radii might be rescaled a bit to enforce strict virialisation and keep with the definition of N-body units, therefore a file MyModel_WithMF_MAREE.xdr can be created to contain the value of the rescaled tidal truncation radius.

To start a run, create a new directory. Inside copy your initial condition files with the following change of names:

 $\texttt{MyModel.xdr} \rightarrow \texttt{MyRun\%00000000\%AMAS.xdr}$

and

 $\texttt{MyModel_ETOILES.xdr} \rightarrow \texttt{MyRun\%00000000\%ETOILES.xdr},$

 $\texttt{MyModel_MAREE.xdr} \rightarrow \texttt{MyRun\%00000000\%MAREE.xdr}, etc$

if it applies. Note that you need exactely 11 (eleven) "0" in the filenames. If you use gere_evolamas.pl, you also need to put the executable evolamas and input_EvolAmas into this directory.

3.2 Output files

ME(SSY)**2 can produce a large variety of output files. They are presented in Table 5. Many of them are for specialised application or testing purpose and only a few are of general use. FHR, the formats are xdr, to preserve the full numerical precision of some data which might be crucial for restart⁶ and ASCII for readability for data which are most useful for monitoring the run and plotting results. Most files are incremental, with information appended to the file as the simulation proceeds. The important exception are "snapshot files" that contain (in principle) the whole information about all particles and can be used for restart or detailed analysis. In this case a different set of files is written each time a snapshot is dumped, with file name indicating the step number, for instance MyRun%00001200000%AMAS.xdr for the mass and orbit information of all particles at step 1200000.

The most important output file is the "master log file" MyRun%Log.asc. It contains a wealth of information about the evolution of the simulation, from a numerical and physical point of view. The same information is also sent to stderr to entertain the user. The format is supposed more human- than computer-friendly and a script Log2rdb.pl can be used to turn this file into a flat table format⁷ The information present in MyRun%Log.asc is presented in Table 6. For the time, I recommend to use the variable Tps_Ufokpl which give it in Fokker-Planck units. In most other output file, no time information is given, only the step number (iPas_Evol or similar name) or, if a time is given, it might not be in the proper units! Therefore it is safer to use MyRun%Log.asc to derive the iPas_Evol \rightarrow Tps_Ufokpl relation and used it determine time from step number.

Most other ASCII files have a rather straightforward flat format. The contain data in columns and a header to explain what the data is. The header are the first lines, starting with **#**. The last of these lines generally looks like

⁶But again, saving 8-byte real data in ASCII with 15 decimal positions also preserves the full precision. Once compressed with, e.g., gzip, such files are nearly as compact as their xdr counterpart. This is the way of the future!

⁷FHR the output format is "

rdb" with a two line header and tabs used to separate columns. It can be turned into the usual ASCII format I use for output from fortran code with another script: rdb2fort.sh.

1: iPas_Evol 2: this_var 3: that_var 4: this_other_quantity

which means that the first column contains (the successive values of) iPas_Evol, the second contains this_var, etc. MyRun%%RayLag.asc is an important output file whose header has a slightly different structure. The last header line looks like

1: iPas_Evol 2: NbSE_liees 3: M_liee 4: Tps_amas || FracMasse : 5: R0001 (0.001000) \
 6: R0010 (0.010000) 7: R0020 (0.020000)

which indicates that the 5th column contains the radius of the sphere containing 0.1% of the total mass, the 6th column the radius for 1% and so on. These quantities are known as "Lagrange radii" and a sphere containing a given fraction of the (remaining) cluster mass is a "Lagrange sphere". Similarly, the file MyRun%Segr.asc ahs the following header

1: iPas_Evol 2: Tps_amas || Masse stellaire moyenne : 3 : m00050 (M<=0.0050) \
 4 : m00100 (M<=0.0100) 5 : m00500 (M<=0.0500)</pre>

indicating that the third column contain the average stellar mass (in M_{\odot}) for all particles inside the 0.5% Lagrange sphere, etc.

If the code detects a error situation it will try and write a lot of information (such as a last snapshot) in files with name starting with _RIP_ (e.g., _RIP_%00051278532%AMAS.xdr) before it exits to help post-mortem investigations into the origin of the problem.

	Variable Recommanded v	value	What it does
	_SURV_CROISS_TEMPS_	0	If > 0 , check that cluster time is actually increasing (!)
	SURVEILLE SORT	0	If > 0, check if argument of sort is < 0 (debugging)
	TEST MODIF PROP SE ACT	Õ	?
		0	If >0 do not try to use a "call system('df')" to test
		0	for free disk space
	NO FLUSH	0	If > 0 , do not use a "call flush" to force write into file
*	ECRIT ETOILES	1	If >0 , write stellar data for each snapshot (in
		-	*%ETOILES xdr files)
	FCRIT CR3C	0	If > 0 write data about 3-body binary heating (does not
	_LONI1_0000_	0	work)
*	FORTT DAVIAC	1	If > 0, write Lagrange redii data (in MyPur ⁹ /PayLag age)
*	ECDIT ANILAC	1	If > 0, write anisotropy data (in MyRull/ h RayLag. asc)
	_ECKII_ANILAG_	1	If > 0 , write anisotropy data (in MyRun/ h Anilag.asc)
	_ECRII_SEGR_	1	II > 0, write average mass data (in MyRun%Segr.asc)
	_ECRIT_RELAX_	0	If >0 , write global relaxation data (in
			MyRun%%GlobRelax.asc)
*	_ECRIT_COLL_	1	If >0 , write data about each collision (in
			MyRun%%Coll.asc)
	_ECRIT_DUPLIC_	0	If >0 , write data about particle duplication (in
			MyRun%%Duplic.asc)
*	_ECRIT_EVAP_	1	If >0 , write data about each evaporation (in
			MyRun%%Evap.asc)
	_ECRIT_LC_	1	If >0 , write data about each "loss cone" event (in
			MvRun%%LC.asc)
	ECRIT CAPT GW	1	If > 0 , write data about each "extreme mass-ratio inspiral"
			event (in MyRun%%GW.asc)
*	ECRIT SUIVI TYPES STELL	1	If >0 . Follow distribution of the various stellar types (in
		-	MyRun%/SuiviMS_asc_etc)
	FCRIT SUIVI SE PART	0	If >0 follow very closely some particles (in
		0	MyRun ⁹ /SujyiSE acc
	FORTT APPPE	0	If > 0 write data about binary tree (in */APRPE vdr files)
	ECRIT DROFIL DOT	0	If > 0, write gride used by code to estimate a and σ (in
	_EGRII_FROFILFUI_	0	$11 > 0$, write grids used by code to estimate p and o (in 10^{10} m/p flog)
		0	*/PG.Xdr Illes)
	_ECRII_IH_	0	11 > 0, write parameters for the selection of particle pairs
		0	$(\text{III } *_{\text{AIH}}, \text{DIn mes})$
	_ECRII_RAND_	0	If >0 , write internal variables of random generator (in
		0	*%RAND.asc files)
	_ECRIT_GRILLE_	?	If > 0 , write grids to follow radial structure evolution (in
			*%GRILLE.xdr files)
	_ECRIT_PG_	0	If > 0 , write grid used by the code to compute density and
			velocity dispersion (in *%PG.xdr files)
	_ECRIT_TSCALE_	1	If >0 , write some info about timescales (in
			MyRun%%Tscale.asc)
	_ECRIT_SPECMASSE_	?	If >0 , write some info about mass spectrum (in
			MyRun%%MSpec.asc)
	_ECRIT_STEVOL_	?	If >0 , write info about stellar evolution events (in
			MyRun%%StEvol.asc)
	_ECRIT_NATKICKS_	?	If >0 , write info about NS/BH natal kicks (in
	_		MyRun%%NatKicks.asc)
	_ECRIT_LAGQUANT_	?	If > 0, write lots of Lagrangian quantities (in
			MyRun%/LagQuant.asc)

Table 1: Pre-processor variables in EvolAmas.mke. A leading * indicates a particularly important variable.

continued from previous page

001	Variable Becommanded v	alue	What it does
	MONITOR MBINS	?	If > 0 track evolution of particles in various mass bins (in
		•	MyRun%/MhinRad asc)
	MONITOR STRONG ENCOUNTERS	0	If >0 keep track of "super encounters" (to simulate 2-
		0	11 > 0, keep track of super checumulative (to simulate 2 body relevation) with large (cumulative) deflection angles
			(in MuRun ⁹ /StrongEncountorg, 2gc))
	UDITE OUL EXCEDITONO	1	(III Mykull%,StrongEncounters.asc))
	_WRITE_CULL_EACEPITUNS_	T	11 > 0, write into about consisting requiring special treat-
		0	ment (in MyRun%%CollExcept.asc)
	_FULLOW_SUBPUP_	0	If >0 , follow closely subpopulation of particles (in
		0	MyRun%%SubPop.asc
*	_PRESENCE_TN_	?	If > 0 , include central object (MBH generally)
不	_TRONC_MAREE_	?	If > 0 , include tidal truncation
	_LIMITE_EXT_	0	If > 0 , include reflecting wall (broken!)
	_EMPECHE_EVAP_RELAX_	1	If >0 , do not allow a star to escape following a relaxation
			"super-encounter"
	_DEPL_ORBITAL_	1	If $= 0$, do not move stars on their orbits
*	_RELAXATION_	1	If > 0 , include 2-body relaxation
*	_KICKS_	0	If > 0 , include large-angle scatterings
*	_COLLISIONS_	?	If > 0 , include collisions
*	_DECHIREMENTS_	1	If > 0 , include tidal disruptions by MBH
*	_DISPARITIONS_	1	If > 0 , include direct plunges into MBH
*	_CAPT_GW_	0	If > 0 , include inspiral into MBH by GW emission
*	EVOL STELL	?	If > 0 , include stellar evolution
*	NATKICKS	1	If > 0 , include natal kicks for NSs and stellar BHs
	CHAUFF BIN 3C	0	If > 0 , include heating by 3-body binaries (does not work!)
	COLLISION CHECK OBBIT OVERLAP	0	If > 0 , do not allow collisions if orbits do not overlap in R
*	TYPE COLL	10	Determine collision treatment 1 for simplistic model (pure
		10	meger or total disruption); 2 for Davies' formulas in (Rauch
			1999); 3 for point-mass gravitational scattering; 4 for toy-
			model parametrisation; 9 non-physical, for tests; 10 for
			SPH-inspired presciptions (Freitag & Benz 2005)
	_TRAITEMENT_COLL_MS_RMN_	2	Determine treatment of MS-compact collisions. 0 does
			nothing (collisions still counted, stars and orbits not mod-
			ified); 1 for complete disruption of MS star; 2 for tidal
			disruption of MS star and partial accretion onto compact
			object
*	_COLL_REJUV_	2	Determine treatment of collisional rejuvenation of MS stars.
			0 to keep absolute age of more massive star; 1 resets age
			to 0 in case of merger; 2 use central He mass to determine
			effective age
*	_HARDEN_SPH_COLL_TREATMENT_	3	Determine if and how the SPH-inspired treatment of colli-
			sions should be "hardened" to avoid problems (see Freitag
			et al. 2006c).
	CONST R TID DISRUP	0	If > 0 , assume constant tidal disruption radius for all stars
*	TYPE TREI. GW	0?	Determine how to estimate relaxation time to test for GW-
			inspiral into MBH, 0 uses (noisy) "encounter relaxation
			time": 1 uses some orbit average: 2 uses fixed value
	TYPE FOR MR RELATION	0	If > 0 , use this as the stellar type to determine M-R relation
		0	(1:MS_3:WD_4:NS_5:BH)
	FIGER RMAR	Ο	If > 0 keep tidal truncation radius at initial value
	AJUST PASSIF	0	If > 0 , a fraction of steps will be "passive adjustment" ones
		0	where particles are just moved on their orbits
			where parenetes are just moved on them orbits

continued from previous page

	Variable	Recommanded value	What it does
	_SURV_ADIAB_	0	If > 0 , make sure that time steps are shorter that a fraction
			of the local timescale for potential change
	_TYPE_LOG_COUL_	0	Type of Coulomb logarithm used. 0 for $\Lambda = \gamma N_*$; 1 for
			local value $\Lambda \propto \sigma^3 P_{\rm orb} (G\langle m_* \rangle)^{-1}$; 2 for $\Lambda = \gamma N_*(R) +$
			$M_{ m BH}/\langle m_* angle$
	_EVOL_UNE_SE_	0	If > 0 , only one particle is modified in a pair (experimental!
			Energy not conserved!)
	STATIQUE	0	If > 0 , do not actually evolve anything (undo everything at
			end of each step; for debugging)
	_RELAX_NULLE_	0	If > 0 , undo relaxation at end of step (for debugging)
	_COLL_NULLES_	0	If > 0 , undo collision at end of step (for debugging)
	_DECHIR_NULS_	0	If > 0 , undo tidal disruption at end of step (for debugging)
	_FORCER_CROISSAN	CE_TN_ 0	If > 0 , use adhoc prescription for growth of central object
	DUPLICATION	0	If > 0 , duplicate each particle when the particle number has
			become less or equal to half the initial number
*	_VERBOSITUDE_	5	Determine how verbose the code will be (on stdout)
	_VERB_PERTES_	0	Determine how verbose the code will be when a particle is
			"lost" to any process
	_VERB_STELLEVOL_	1	Determine how verbose the code will be about stellar evo-
			lution
	_VERB_EVAP_	0	Determine how verbose the code will be about evaporation
	_VERB_COLL_	0	Determine how verbose the code will be about collisions
	_VERB_INTERP_RES	COLL_ 1	Determine how verbose the code will be about interpolation
			of SPH collisions results
	_SYM_M1_M2_	1	If > 0 , enforce mass-symmetry in the outcome of MS–MS
			collisions
	_RAY_LAG_SPECIAL	_ 0	If > 0 , use special choice for the default Lagrange fraction
			(obsolete)

File name	Compulsory?	Format	Role	
input_EvolAmas	у	ASCII	Contains most numerical and physical parameters for the run	
${\tt MyRun}$ %0000000000%AMAS.xdr 1	у	xdr	Initial cluster structure (masses, velocity, positions of particles)	
MyRun%0000000000%ETOILES.xdr	n	xdr	Initial cluster structure (stellar masses, types [MS,WD,NS,BH] and ages)	
MyRun%0000000000%TN.xdr	n	xdr	Initial masses of the "central black hole" and "central gas reservoir"	
MyRun%0000000000%MAREE.xdr	n	xdr	Initial value of tidal truncation radius	
Mbins.asc	n	ASCII	Specification of the mass bins to be tracked (Lagrange radii, etc.)	
FracRayLag.asc n		ASCII	Specification of the fractional mass for the overall Lagrange radii	
FracSegrLag.asc	n	ASCII	Specification of the fractional mass for the Lagrange spheres to track the average stellar mass	
FracSTSLag.asc	n	ASCII	Specification of the fractional mass for the Lagrange spheres used to track the various species	
ParamStellEvol.asc	n	ASCII	Parameters for stellar evolution (Max ZAMS mass to form WD, NS, etc.)	
MassRadiusMS.asc	n	ASCII	Main-Sequence Mass-Radius relation	
Param_Croiss_Forc_TN.asc	n	ASCII	Parameters determining "forced" growth of central object	
Liste_SE_a_suivre.asc	n	ASCII	List of IDs of particles to follow very closely	
ListSubPop.asc	n	ASCII	List of IDs of particles to follow closely ("subpopulation")	
Grille_ResColl_SPH.asc	y if collisions	ASCII	Grid of outcome of collsions of MS stars (from SPH simulations)	

Table 2: Input files. ¹ "MyRun" is the name of the run given in input_EvolAmas.

File name	Role
gere_evolamas.pl	Perl script to "drive" simulation. Makes it easier to pass parameters and to request special snapshots
_EvolAmas%%DemSauv.asc	Can be used to request snapshot save when some conditions are met if simulation is driven by gere_evolamas.pl
_LIRE_COND_SAUV_	Flag file. Forces gere_evolamas.pl to re-read conditions from _EvolAmas%%DemSauv.asc (erased once done)
_SAUV_DEMANDEE_	Flag file. Forces ME(SSY)**2 to save a snapshot as soon as possible (erased once done)
STOP	Flag file. Forces (clean) stop (erased at [re]start)

Table 3: Control files.

Table 4: Parameters in input_EvolAmas. A leading * indicates a particularly important parameter. Other parameters can generally be left at their default value. In the "Type" column, "r" stands for real, "c" for character and "i" for integer.

	Parameter	Type	Default	Explanation
	NomSimul	c*80	'_EvolAmas'	Run name. Used to form the name of input/output files
	iVerbeux	i	1	Determines how verbose the code will be (on the standard error)
*	FacNbPasSauv	r*8	5.0d0	A complete save (snapshot and all) is done every FacNbPasSauv*NbSE steps (NbSE is the
				number of particles)
*	FacNbPasSauvPart	r*8	1.0d0	Same as FacNbPasSauv for partial save
*	FacNbPasInfo	r*8	1.0d0	General info about run will be given every FacNbPasInfo*NbSE steps
	FacNbPasRecArbre	r*8	2.0d0	Binary tree rebuilt from scratch every FacNbPasRecArbre*NbSE steps
	FacNbPasRecRelax	r*8	10.0d0	Relaxation parameters recomputed every FacNbPasRecRelax*NbSE steps
	FacNbPasRecTpsAmas	r*8	1.0d0	Cluster (median) time recomputed every FacNbPasRecTpsAmas*NbSE steps
	FacNbPasDetTrelExtremes	r*8	0.5d0	Extreme values of relax times recomputed every FacNbPasDetTrelExtremes*NbSE steps
	FacNbPasDetEvap	r*8	1.0d0	Check for evaporated stars performed every FacNbPasDetEvap*NbSE steps
	FacNbPasTestDuplic	r*8	0.5d0	Test for particle duplication performed every FacNbPasTestDuplic*NbSE steps
	FacNbPasTestDemSauv	r*8	0.1d0	Test for file asking for snapshot (_SAUV_DEMANDEE_) performed every
				FacNbPasTestDemSauv*NbSE steps
	FacNbPasRecalcTH	r*8	0.5d0	The parameters for the function used to select particle pairs are recomputed every
				FacNbPasRecalcTH*NbSE steps
*	i_ini	i*8	0	Initial step value (Code will attempt to read corresponding snapshot)
*	i_fin	i*8	2000000000	Code terminates when step counter reaches this value
	T_fin	r*8	1.0d5	Code termintes when time (in some units!?) reaches this value
*	Frac_Trelax	r*8	0.01d0	Requested maximum value for time_step/relaxation_time
*	Frac_Tcoll	r*8	0.01d0	Requested maximum value for time_step/collision_time
	Frac_Tkick	r*8	0.01d0	Requested maximum value for time_step/large_angle_scattering_time
	Frac_Tadiab	r*8	0.01d0	Requested maximum value for time_step/potential_change_time
	Frac_Taccr	r*8	0.01d0	Requested maximum value for time_step/central_object_growth_time
	Frac_Tevap	r*8	0.01d0	Requested maximum value for time_step/evaporation_time
*	Frac_Tevst	r*8	0.025d0	Requested maximum value for time_step/stellar_evolution_time
	Tadiab_ini	r*8	0.001d0	Initial value of time scale for potential evolution (just needs to be short)
*	FactTrelMax	r*8	1.0d3	Maximum ratio of time steps (misnomer!)
*	NbSECouchePot	i	25	Requested number of particles per cell in density radial grid (misnomer!)
	FacMinPG	r*8	0.5d0	Grid rebuilt if number of particle in any cell drops below FacMinPG*NbSECouchePot
	FacMaxPG	r*8	1.5d0	Grid rebuilt if number of particle in any cell raises above FacMaxPG*NbSECouchePot
*	MasseEtoileDef	r*8	1.0d0	Default value for average stellar mass (overriden by info in ETOILES.xdr file if present)
	TypeEtoileDef	i	1	Default stellar type (overriden by info in ETOILES.xdr file if present; 1 for MS stars)
*	rNbEtoiles	r*8	1.0d6	Total number of stars (independent of NbSE!)

continued from previous page

	Parameter	Type	Default	Explanation
	iRand_Seed	i	133111	Seed for random number generator
	Frac_dt_max	r^*8	1.0d0	Obsolete, was used to determine value of sub-timestep
*	TailleAmas_en_pc	r^*8	3.0d0	N-body length units in parsecs
	NbSECoucheCB3c	i	1000	Not used. Number of grid elements used to determine 3-body binary heating. Never worked well.
	FacNbPasRecCB3c	r*8	0.5d0	Not used. 3-body binary heating recomputed every FacNbPasRecCB3c*NbSE steps
*	M_TN_ini_def	r*8	0.0d0	Default initial mass of central object, in fraction of total stellar mass (overriden by info in TN.xdr file if present)
*	NbSauv_Conserve	i	5	Only 1 snapshot every NbSauv_Conserve is kept. Others are erased as the simulation proceeds to save disk space
*	R_Mar_ini_def	r*8	1.0d30	Default initial value of tidal truncation radius in N-body units (overriden by info in MAREE.xdr file if present)
*	Gamma_relax	r*8	0.14d0	Proportionalite coefficient in Coulomb log. Lambda=Gamma_relax*N_star
	frac_accr_Coll	r*8	1.0d0	Fraction of mass liberated in collisions accreted by MBH
	frac_accr_Dechir	r*8	1.0d0	Fraction of mass liberated in tidal disruptions accreted by MBH
	frac_accr_EvolSt	r*8	1.0d0	Fraction of mass liberated by stellar evolution accreted by MBH
	effic_conv_lum	r*8	0.0d0	Efficiency for converting mass into light during accretion onto MBH
	Fac_dt_accr_M	r*8	0.01d0	The amount of mass in the central reservoir (disk) that can be accreted onto the MBH is determined every Fac_dt_accr_M*NbSE steps
	Fac_dt_accr_Npart	r*8	10.0d0	The amount of mass in the central reservoir (disk) that can be accreted onto the MBH is determined when the reservoir has accumulated more than Fac_dt_accr_Npart times the mass of an average particle
	Mu_mol_elec	r*8	1.13d0	Average molecular mass per electron of stellar gas
	<pre>fact_b0_kick</pre>	r*8	2.0d0	Encounters with impact parameter smaller than fact_b0_kick times the value for 90 degree deflection are treated as large-angle scatterings
	FracPas_AjustPassif	r*8	0.0d0	Fraction of passive steps (change of orbital position only)
	Rang_CC	i	10	Number of particles subject to special "central control". Probably obsolete
	FactR_CC	r*8	0.5d0	Factor for distance to centre used in "central control". Probably obsolete
	DeltaRang_Paire	i	1	Rank difference for two particles in an interacting pair
	StellMet_def	r^*8	0.02d0	Default stellar metallicity (0.02 is solar)
	Fac_SldAvg_Tscale	r*8	5.0d0	NbSECouchePot*Fac_SldAvg_Tscale is the number of particles for sliding average to compute time scales in Calc_Tcarac
	Type_CtrObj_def	c^{*16}	'TN'	Default type of central object (TN or MS)
	CollMassLossFracDef	r*8	0.0d0	Flat fractional mass loss in simplistic collisional treatment
	CollDminDestr_MS_vs_RMN	r*8	0.5d0	Distance below which the MS star is completely destroyed in encounters with compact stars (for _TRAITEMENT_COLL_MS_RMN_=1)

continued from previous page

Parameter	Type	Default	Explanation
CollAccrFrac_MS_on_WD	r*8	0.0d0	Fraction of mass of the MS star accreted onto WD if MS star tidally disrupted (for
			_TRAITEMENT_COLL_MS_RMN_=2)
CollAccrFrac_MS_on_NS	r^*8	0.0d0	Fraction of mass of the MS star accreted onto NS if MS star tidally disrupted (for
			_TRAITEMENT_COLL_MS_RMN_=2)
CollAccrFrac_MS_on_BH	r^*8	0.5d0	Fraction of mass of the MS star accreted onto BH if MS star tidally disrupted (for
			_TRAITEMENT_COLL_MS_RMN_=2)
Coef_Trlx_GW_Capt	r^*8	1.0d0	Fudge factor on trelax when compared to GW-inspiral time for GW-capture
Tmax_GW_Capt_Gyr	r^*8	1.0d30	Maximum inspiral time considered for GW captures, in Gyr
Trlx_GW_def_Gyr	r^*8	1.0d0	Relaxation time when a constant value is used to look for captures (_TYPE_TREL_GW_=2; not
			recommended)
R_tid_disr_def_NB	r^*8	1.0d-7	Tidal disruption radius all stars in N-body units when <code>_CONST_R_TID_DISRUP_>0</code>

Table 5: Output files. xxxxxxxxx" is the number of the step. The + sign(s) indicate particularly useful output. A - sign indicate a file you will probably never need.

	File name	Incr	Format	Role
++	MyRun%xxxxxxxx%AMAS.xdr	n	xdr	Cluster structure (masses, velocity, positions of particles)
++	MyRun%xxxxxxxx%ETOILES.xdr	n	xdr	Cluster structure (stellar masses, types [MS,WD,NS,BH] and ages)
	MyRun%xxxxxxxx%TN.xdr	n	xdr	Masses of the "central black hole" and "central gas reservoir"
	MyRun%xxxxxxxx%MAREE.xdr	n	xdr	Value of tidal truncation radius
	MyRun%xxxxxxxx%TEMPS.xdr	n	xdr	Individual times of particles
	MyRun%xxxxxxxx%CONS.xdr	n	xdr	Data to allow accurate tracking of energy conservation in case of restart
	MyRun%xxxxxxxx%GRILLE.xdr	n	xdr	Radial grids to plot profiles $(\rho, \sigma, \beta, \text{etc})$
—	MyRun%xxxxxxxx%PG.xdr	n	xdr	Radial grids used by code to estimate ρ and σ
	MyRun%xxxxxxxx%ARBRE.xdr	n	xdr	Binary tree used by code to store rank and potential info
	MyRun%xxxxxxxx%TH.bin	n	bin	Parameters for the selection of particle pairs (for debugging)
—	MyRun%xxxxxxxx%RAND.asc	n	ASCII	Internal variables of random generator (for restart continuing with same random sequence)
++	MyRun%%Log.asc	У	ASCII	Main log-file containing most of the useful information (also written to stdout)
++	MyRun%%RayLag.asc	У	ASCII	Lagrange radii evolution
+	MyRun%%Segr.asc	У	ASCII	Evolution of average stellar mass in Lagrange spheres
+	MyRun%%AniLag.asc	У	ASCII	Evolution of anisotropy (averaged in Lagrange spheres)
++?	MyRun%%LagQuant.asc	У	ASCII	Lagrangian quantities evolution (can replace the previous 3 files)
	MyRun%%MSpec.asc	У	ASCII	Some info to track evolution of the mass spectrum
+	MyRun%%MbinRad.asc	У	ASCII	Lagrange radii of particles in various bins of stellar mass
+	MyRun%%SuiviMS.asc	У	ASCII	Lagrange radii, and various quantities in Lagrange spheres for MS stars
+	MyRun%%SuiviWD.asc	У	ASCII	Same for white dwarfs
+	MyRun%%SuiviNS.asc	У	ASCII	Same for neutron stars
+	MyRun%%SuiviBH.asc	У	ASCII	Same for stellar black holes
	MyRun%%Tscale.asc	У	ASCII	Some (statistical) info about various time scales
	MyRun%%CaptGW.asc	У	ASCII	Info about "extreme mass-ratio inspirals" into central MBH (aka "GW captures")
	MyRun%%Coll.asc	У	ASCII	Info about collisions
	MyRun%%CollExcept.asc	У	ASCII	Info about collisions that required special treatment (extrapolation)
	MyRun%%Evap.asc	У	ASCII	Info about stars lost from the cluster through "evaporation"
	MyRun%%LC.asc	У	ASCII	Info about "loss cone" events (tidal disruptions, inspirals, etc)
	MyRun%%NatKicks.asc	У	ASCII	Info about NS and BH natal kicks
	MyRun%%StEvol.asc	У	ASCII	Info about stellar evolution (star/particle turning into remnant)
	MyRun%%StrongEncounters.asc	У	ASCII	Info about "super encounters" (to simulate 2-body relaxation) with large (cumulative) de-
				flection angles
	MyRun%%SuiviSE.asc	У	ASCII	Info about some particles followed very closely
	MyRun%%SubPop.asc	У	ASCII	Info about subpopulation followed closely

continued from previous page

	I I I I I I I I I I I I I I I I I I I			
	File name	Incr	Format	Role
	MyRun%%GlobRelax.asc	У	ASCII	Some global relaxation quantities
	MyRun%%Duplic.asc	У	ASCII	Log file of particle duplications
	MyRun%%LogSauv.asc	У	ASCII	Log file of "externally" requested snapshots
	PID	n	ASCII	PID of run (written once)
	_PARAMSasc	n	ASCII	Parameters actually used by run (written once)
	CaracCode.asc	n	ASCII	Value of many preprocessor variables at compile time (written once)
	Units.asc	n	ASCII	Physical units used by run (written once)
	divers.asc	У	ASCII	Bits of info of dubious value (self-described)
	INFO	У	ASCII	Info about pid, host, start time & date (self-described)
	DONE	n	ASCII	To indicate that the run has finished (contains time and hostname)
_	_test_TMS.asc	n	ASCII	Relation mass–MS lifetime (for checking purposes)
_	_test_Remn.asc	n	ASCII	Relation ZAMS mass \rightarrow remnant mass and type (for checking purposes)
_	_test_MRrelMS.asc	n	ASCII	Main-Sequence Mass-Radius relation (for checking purposes)
_	_test_ParamStellEvol.asc	n	ASCII	Parameters for stellar evolution (for checking purposes)

Quantity	Explanation					
Physical data ("DONNEES PHYSIQUES")						
iPas Evol	Step number					
Tps Ucode	Cluster time in some mysterious, historical code units. It is the median					
-1	time of all particles					
Tps_Ufokpl	Time in Fokker-Planck units					
Tps_en_yr	Time in yrs					
dTps_inf	One sixth of particles have time smaller than Tps_Ucode-dTps_inf					
dTps_sup	One sixth of particles have time larger than Tps_Ucode+dTps_sup					
Tps_moy	Average time in code units					
Sigma_Tps	Dispersion of particle times in code units					
NbSE_subsist	Number of particles still in the cluster					
Net_subsist	Number of stars still in the cluster					
M_amas	Total stellar mass in the cluster in N -body units					
M_amas_en_Msol	Total stellar mass in the cluster in M_{\odot}					
M_TN	Mass of central object in N -body units					
M_rsrv	Mass in the central gas reservoir in N -body units					
iType_CtrObj	Type of central object (1 for MS, 5 for BH)					
Age_CtrObj_yr	Evolutionary age of central object in yrs (if its is a VMS)					
dMejec_evap	Mass lost by evaporation (total, N -body units)					
dMejec_coll	Mass ejected from system form collisions					
dMejec_evst	Mass ejected from system from stellar evolution					
dMejec_dechir	Mass ejected from system form tidal disruptions					
dMaccr_coll	Mass accreted by central object form collisions					
dMaccr_evst	Mass accreted by central object form stellar evolution					
dMaccr_dechir	Mass accreted by central object form tidal disruptions					
dMaccr_disp	Mass accreted by central object form plunges through norizon					
dMaccr_captGw	Tatal approx of the system $(N - hody units)$					
Etot_amas	Total kinetic energy of the stars $(N - body units)$					
Ecilianas Estollarou	Total gravitational energy of the stars $(N-body units)$					
dEtat even	Change of total energy by evaporation (total N -body units)					
dEtot_coll	Change of total energy by collisions					
dEtot evst	Change of total energy by stellar evolution (mass loss)					
dEtot dechir	Change of total energy by tidal disruptions					
dEtot disp	Change of total energy by plunges through horizon					
dEtot captGW	Change of total energy by GW-inspirals					
dEtot bin3c	Change of total energy by 3-body binary heating (doe not work)					
dEtot_nk	Change of total energy by natal kicks					
R_maree	Tidal truncation radius $(N-body units)$					
Pot_ctr	Central potential $(N-body units)$					
Rho_ctr	Central density $(N-body units)$					
Sigma3D_ctr	Central 3-D velocity dispersion $(N-body units)$					
Nb_relax	Number of steps with relaxation ("super-encounters")					
Nb_coll	Number of steps with collision					
Nb_kick	Number of steps with large-angle scattering					
Nb_dechir	Number of steps with tidal disruption					
Nb_disp	Number of steps with plunge through horizon					

Table 6: Quantities written in master log file MyRun%%Log.asc.

continued	from	previous	page
Quantity			

Quantity	Explanation
Technical data ("DONNEES TECHNIQUES")	
iPasEvol	Step number
Date	Computer date
Heure	Computer time
Тсри	Number of CPU seconds used
Viriel	Virial ratio $-(E_{\rm kin} + E_{\rm tot})/E_{\rm tot}$ (should be close to 0)
Erreur_rel_E	Accumulated relative error in energy (should be close to machine preci-
	sion)
Erreur_rel_M	Accumulated relative error in mass (should be close to machine precision)
Nb_moy_VN_pos_orb_par_pas	Number per step of rejections to find new orbital position (average since
	last write)
Nb_moy_parcrs_arbre_par_pas	Number per step of binary tree descents
Nb_moy_test_LC_par_pas	Number per step of test for loss-cone entry
Nb_RejetPaire	Number of pair rejections (since last write)
Nb_AnnulRelaxEvap	Number of "super-encounters" prevented because they would result in
	an ejection
Nb_AnnulRelaxCC	Number of "super-encounters" prevented because of the "central control"
Frac_Pas_Relax	Fractional number of steps with relaxation (i.e., super-encounters), gen-
	erally 1
Dev_SuperRenc_moy	Average deflection angle in "super-encounters"
Dev2_SuperRenc_moy	RMS deflection angle in "super-encounters"
Frac_SuperRenc_Pi16	Fractional number of "super-encounters" with deflection angle $\theta_{\rm SE} \geq$
	$\pi/10$
Frac_SuperRenc_P18	idem, $\theta_{\rm SE} \ge \pi/8$
Frac_SuperRenc_P14	idem, $\theta_{\rm SE} \ge \pi/4$
Frac_SuperKenc_P12	Idem, $\theta_{\rm SE} \ge \pi/2$
dk_rel_kenc_moy	Average relative difference in radius for encountering pairs ($\delta_R \equiv 2(R_2 - D_1)/(D_1 + D_2)$)
	$(n_1)/(n_1 + n_2))$
dR_rel_Renc_max	Maximum relative difference in radius for encountering pairs $\sum_{i=1}^{n} \sum_{j=1}^{n} 0.01$
Frac_kenc_dk_UUI	Fraction of encounters with $\theta_R \ge 0.01$
Frac_Kenc_dK_01	1dem, $\theta_R \ge 0.1$
Frac_Kenc_dK_05	idem, $\delta_R \ge 0.5$
Frac_Renc_dR_1	idem, $\delta_R \ge 1$

References

Baumgardt, H. 2001, MNRAS, 325, 1323

Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton University Press)

Dehnen, W. 1993, MNRAS, 265, 250

Freitag, M. 2001, Classical and Quantum Gravity, 18, 4033

—. 2003, ApJ Lett., 583, L21

Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006a, ApJ, 649, 91

Freitag, M. & Benz, W. 2001, A&A, 375, 711

-. 2005, MNRAS, 358, 1133

Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006b, MNRAS, 368, 141

Freitag, M., Rasio, F. A., & Baumgardt, H. 2006c, MNRAS, 368, 121

Fukushige, T. & Heggie, D. C. 2000, MNRAS, 318, 753

Heggie, D. C. & Mathieu, R. D. 1986, in The Use of Supercomputers in Stellar Dynamics, ed. P. Hut & S. L. W. McMillan (Springer-Verlag), 233

Hénon, M. 1973, in Dynamical structure and evolution of stellar systems, Lectures of the 3rd Advanced Course of the Swiss Society for Astronomy and Astrophysics (SSAA), ed. L. Martinet & M. Mayor, 183–260

Hénon, M. 1975, in IAU Symp. 69: Dynamics of Stellar Systems, ed. A. Hayli, 133–149

Hénon, M. H. 1971a, Ap&SS, 13, 284

—. 1971b, Ap&SS, 14, 151

Rauch, K. P. 1999, ApJ, 514, 725

Spitzer, L. 1987, Dynamical evolution of globular clusters (Princeton University Press)

Tremaine, S., Richstone, D. O., Byun, Y., Dressler, A., Faber, S. M., Grillmair, C., Kormendy, J., & Lauer, T. R. 1994, AJ, 107, 634

A License

Copyright (c) 2008, Marc Dewi Freitag (marc.freitag<at>gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Note that, as stated in the documentation, the current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php) but is not distributed with them as they are not covered by the present license. Users of the software should obtain their own copy of these routines or replace them by other routines realising the same tasks.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.