
Explanations to install, compile and run ME(SSY)**2

Marc Freitag

July 17, 2008

1 Preamble

This file and the codes it describes should be available at the url
http://www.ast.cam.ac.uk/research/repository/freitag/MODEST MonteCarlo/MESSY Download.html.

1.1 References

ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems”1. This name
also conveys something of the programming style I used. . . Note that ME(SSY)**2 is just the “commercial
name” but, traditionally, since I started developing this code in 1995 or 1996, the executable is called evolamas

(something like “evolve cluster” in French) and the main source file is EvolAmas.F.
The physical and algorithmic principles underlying ME(SSY)**2 are described in:

• Freitag, M. & Benz, W. 2001, A New Monte Carlo Code for Star Cluster Simulations: I. Relaxation,
A&A, 375, 711
http://uk.arxiv.org/abs/astro-ph/0102139

http://dx.doi.org/10.1051/0004-6361:20010706

• Freitag, M. & Benz, W. 2002, A New Monte Carlo Code for Star Cluster Simulations: II. Central Black
Hole and Stellar Collisions, A&A, 394, 345
http://uk.arxiv.org/abs/astro-ph/0204292

http://dx.doi.org/10.1051/0004-6361:20021142

The code has been used in the following refereed papers: Freitag (2001); Freitag & Benz (2001, 2002);
Freitag (2003); Freitag et al. (2006c,b,a). The code is based on the scheme pioneered by Michel Hénon
in the 70s to follow the evolution of globular clusters (Hénon 1971a,b; Hénon 1973; Hénon 1975). For
some general information on Hénon-type Monte-Carlo (MC) codes, see my slides for the “Cambody” sum-
mer school: http://www.cambody.org/index.php?page=notes (the slides on Fokker-Planck methods are
useful to understand the treatment of 2-body relaxation). As a follow-on of this school, a book on col-
lisional stellar dynamics is “in the making”. My chapters on MC and Fokker-Planck approaches can be
found at http://www.ast.cam.ac.uk/∼freitag/Cambody/Book/share/. I have also written a couple of
web pages on MC techniques for the MODEST2 web site: http://www.ast.cam.ac.uk/∼freitag/MODEST

MonteCarlo/intro.html. There you will find more references but it is a bit outdated as I haven’t changed
anything there since early 2004.

1.2 License and use of Numerical Recipes routines

ME(SSY)**2 should be free and open. It is distributed under an MIT license (see appendix A). Unfortunately
it relies on the use of some routines taken from ”The numerical recipes in Fortran” which you can only use if you
have bought them, I think. See http://www.nr.com/and http://www.numerical-recipes.com/com/storefront.html.
I should try to find open and free alternatives to these routines. For the time being, they are in files whose
names and with NR.f or NR.F, which are not distributed with ME(SSY)**2. The routines used are:

1Name suggested by Pau Amaro-Seoane.
2“MOdeling Dense STellar systems”, see http://www.manybody.org/modest/.

1

http://www.ast.cam.ac.uk/research/repository/freitag/MODEST_MonteCarlo/MESSY_Download.html
http://uk.arxiv.org/abs/astro-ph/0102139
http://dx.doi.org/10.1051/0004-6361:20010706
http://uk.arxiv.org/abs/astro-ph/0204292
http://dx.doi.org/10.1051/0004-6361:20021142
http://www.cambody.org/index.php?page=notes
http://www.ast.cam.ac.uk/~freitag/Cambody/Book/share/
http://www.ast.cam.ac.uk/~freitag/MODEST_MonteCarlo/intro.html
http://www.nr.com/
http://www.numerical-recipes.com/com/storefront.html
http://www.manybody.org/modest/

covsrt dawson dfridr erfcc gammln gaussj hunt indexx lfit locate midinf midpnt midsql odeint

polint qromb qromo qsimp rkck rkqs rtsafe selip shell spline trapzd zriddr

The have all been adapted to the use of double precision floating-point number (instead of real).
Furthermore, ME(SSY)**2 also uses a modified verion of rtsafe, rtsafe_relwhich has the following interface:

double precision function rtsafe_rel(funcd,x1,x2,xacc_rel)

xacc_rel is the required relative accuracy of the root determination. I.e. you need to use a test of the following
sort:

if (abs(dx).lt.(xacc_rel*abs(rtsafe_rel)+1.0d-20)) then

at the appropriate place ;-)

1.3 Very quick overview

ME(SSY)**2 evolve star cluster models. The code is based on the following set of core assumptions:

• Spherical symmetry (hence no rotation, flattening, triaxiality, etc).

• Dynamical equilibrium (no violent relaxation, etc).

• Diffusive relaxation. The 2-body relaxation is treated in the Chandrasekhar approximation by assuming
that it amounts to the effects of a large number of uncorrelated, small-angle 2-body encounters, each of
which is a Keplerian hyperbolic deflection.

As of November 2006, the physics included is:

• Self-gravity of the cluster.

• 2-body diffusive relaxation.

• Simple stellar evolution. The stars do not evolve on the MS. At the end of their MS lifetime, they turn
into compact remnants.

• Stellar collisions. One can inter- or extrapolate from a large database of SPH simulations (Freitag &
Benz 2005).

• Large-angle 2-body encounters (“kicks”). Those are supposed to be negligible in most circumstances but
it was easy to include into the code.

• A central massive object (generally thought to be a (I)MBH). It is considered fixed at the centre. It
interacts with the stellar system through:

– Contribution to potential.

– Tidal disruptions.

– Direct plunges through horizon.

– “Extreme mass-ratio inspiral” due to emission of gravitational waves. This process might not be
treated accurately enough in the present implementation.

• Tidal truncation of the cluster (condition on apocentre distance).

Regrettably, at this point ME(SSY)**2 does not include

• Giant stars (or any detailed stellar evolution).

• Binaries.

• Detailed treatment of tidal effects such as variable tidal field, delayed evaporation (Fukushige & Heggie
2000; Baumgardt 2001), disk and bulge shocking.

• Effects of gas (contribution to potential, accretion onto stars or the MBH, effects of gas removal from
young clusters).

2

1.4 Units

In most places (in particular for input and output), ME(SSY)**2 uses so called N−body units (Hénon 1971b;
Heggie & Mathieu 1986). I define the unit system such that the constant of gravity is G = 1, the total stellar
mass is initially Mcl(0) = 1, and the total initial stellar gravitational energy (not accounting for the contribution
of the MBH to the potential) is −1/2 (Freitag & Benz 2001; Freitag et al. 2006a). As a time unit, I use the
“Fokker-Planck time” TFP which is connected to the N−body time unit TNB through TFP = (N∗(0)/ lnΛ)TNB

were N∗(0) is the initial number of stars and ln Λ = ln(γN∗(0)) the Coulomb logarithm (Binney & Tremaine
1987; Spitzer 1987). I prefer to use TFP rather than TNB because the former is a relaxation time while the
latter is a dynamical time. Individual stellar masses and radii (important for stellar evolution and collisions)
are in M⊙ and R⊙, respectively.

2 Installing ME(SSY)**2

2.1 Use of xdr format

For historical reasons3 (FHR), I used some portable binary format called xdr for the large snapshot files
containing the particle data, in particular the initial condition file(s). One has to download and install the
fxdr fortran xdr library, to be found at http://meteora.ucsd.edu/∼pierce/fxdr home page.html. This is
generally straightforward to install. My make files assume the library libfxdr.a is put in $HOME/lib and the
include file fxdr.inc in $HOME/include.

I can provide various codes to convert to/from xdr files. In practice, you will need some code to write
the initial condition file(s) in xdr format as ME(SSY)**2 is not able to generate its own initial cluster model
(this is a feature ;-)). You will need to be able to read the xdr snapshot only if you want to know about
the properties of individual particles. ME(SSY)**2 also outputs a lot of information in ASCII files to follow
overall or statistical properties of the cluster, such as Lagrange radii or interesting events such as collisions.

2.2 Compiling the code

The code is written in more or less standard fortran-77. It is spread over a large number of files (153 and count-
ing). The main file is EvolAmas.F and most other files have a name starting with EvolAmas_. The extension .f

is for plain fortran files while .F files contain pre-processor directive allowing to customise the code at compile
time. Most pre-processor variables are set in the make file EvolAmas.mke. The file Machine_Dependent.F

contains all subroutines that might cause a problem when porting from one architecture to another or from a
compiler to another. Their name end with _MD. In general, files whose names end with _inc.f are include files,
i.e., they are “incorporated” into other files through the “include” command. Names ending with _param.f

and _common.f contain definitions of parameters (aka constants) and common blocks that are included in
several places.

I highly recommend to use GNU tools. In particular the GNU make and the the GNU fortran com-
piler g77 or the more recent gfortran. I was able to compile the code on Solaris, various GNU/Linuxes
PCs and Mac OSX. Long time ago, I was successful using the Solaris fortran compiler, the Portland group
compiler (on PCs), and the Intel compiler (on PCs). But I now stick to gnu compiler and EvolAmas.mke

probably only works for g77 (if at all!). Note that the make file might not work with non-GNU versions of
make and that it needs the Z shell zsh to be installed (its path is set via the variable SHELL at the begin-
ning). Another reason why you need zsh is that it is used by the scripts mke2list_preproc_defines.sh and
CreateFortranPrintCodeForListPreprocDefines.sh called by the makefile. These scripts are called to write
some fortran routine which will print out the values of most (all?) precompiler variables in CaracCode.asc

when ME(SSY)**2 is run.
If you are lucky, compiling ME(SSY)**2 is as easy as

%make -f EvolAmas.mke

where % indicates the prompt. This should create the executable __evolamas__ which you can happily rename
to, say, evolamas. However many aspects of what the code will do, in particular the included physics, have

3The goal was to avoid “endianness” problems when transferring files from, say, Solaris workstations to PCs. But a more

widely used and better supported format such as FITS or compressed ASCII would have been preferable.

3

http://meteora.ucsd.edu/~pierce/fxdr_home_page.html

to be decided before compilation as they are controlled by pre-processor variables. In Table 1, I list the pre-
processor variables that are set in EvolAmas.mke through the -D switch of the compiler. For instance, the
variable _ECRIT_ETOILES_ is set to 1 in through -D_ECRIT_ETOILES_=1. Not all pre-processor variables are
set in EvolAmas.mke. Some are (re)set in various .F files using the pre-processor “#define” directive. As a
general rule, only the pre-processor variables with a leading “*” in Table 1, should be tinkered with. Note
that many of them determine what kind of information is output. See § 3.2 and Table 5 for more information
about ME(SSY)**2’s rich output.

Before compiling, you should also set the parameter iDimSE in Param_Amas.f to a value large enough to
accommodate your number of particles. iDimSE is the size of arrays containing the particles’ data; it can be
larger than the number of particles you will use (this might or might not result in more memory usage than
required).

3 Running ME(SSY)**2

3.1 Input files and parameters

This is where the fun begins! Over the years, ME(SSY)**2 has grown quite complex but I always tried to
preserve compatibility with the data and parameter files of the previous versions. As a results, the input and
output data are scattered in more files (and using more formats) that is really comfortable! Table 2 shows a
list of input files, i.e., files containing initial conditions (the structure of the cluster at t = 0) or parameters to
set the physics or affecting the numerics. Note that only a very few are compulsory for ME(SSY)**2 to run.
The others can be used to override the default physics and numerics.

In Table 3, I list files that can be used for some (limited) real-time control of the run, such as requesting a
“snapshot” (saving all particle data to disk) or an early termination. Most importantly, there is a Perl script,
gere_evolamas.pl which is driver for the fortran executable evolamas.

3.1.1 The main parameter file (aka input EvolAmas)

This is the most important file to set nearly all physical and numerical parameters. If one uses gere evolamas.pl

to drive the run, the script will look for a file named input_EvolAmas containing parameters and comments,
and format it for evolamas. In this case one can include blank lines and anything starting with # is considered
a comment. If gere_evolamas.pl is not used, the format is more strict (see below) and the preferred way to
pass the parameters is by using the command:

%./evolamas -f my_parameter_file

where my_parameter_file is your parameter file (no kidding!). For simplicity, we will assume it is called
input_EvolAmas. The stricter format for input_EvolAmas accepted by evolamas is something like that:

Param_name_1 # Some comments if you like

Param_value_1

Param_name_2

Param_value_2 # More comments if you please

Param_name_3

Param_value_3

This will give the value Param_value_1 to the variable Param_name_1 and so on. Note that one or more white
space must appear before the value of a parameter and none before its name. In principle # is not required
before a comment as only the first “word” of each line will be read anyway! evolamas will complain and stop
if it doesn’t recognise the name of a parameter. If you are using gere_evolamas.pl, you can change the value
of parameters on the command line:

%./gere_evolamas.pl --option Param_name_1=Param_value_1 --option Param_name_2=Param_value_2

If you use the switch --Print with gere_evolamas.pl, it will just output on stdout a cleaned-up version of
the parameter file but not run evolamas. This is useful for systems where you cannot drive the code with such
a script (such as a PC cluster using some queue submission software) but you still want gere_evolamas.pl

to prepare a nice parameter file for you.

4

It should be noted that the code will try to start with the snapshot files (MyRun%xxxxxxxxxx%AMAS.xdr,
etc) corresponding to the step number given by the parameter i ini (value of “xxxxxxxxxx”)4. Hence, if you
want to (re)start from t = 0 set i ini to 0. If you want to continue a simulation interrupted at some step
n (with existing corresponding snapshot files), set it to n. gere_evolamas.pl will not allow you to run a
simulation in a directory where there are already snapshot files for a step number larger than 0 unless you use
the switch --Force to force restart from scratch or --Continue to continue from the last snapshot in which
case you don’t have to set i ini manually.

Note that it is important that the number of digits in “xxxxxxxxxx” be exactly 10 (ten, dix, sepuluh). The
code is too dumb to find the input file(s) if they do not follow this convention!

3.1.2 Initial condition files

The file MyRun%0000000000%AMAS.xdr is one of the very few which is compulsory it contains the initial cluster
structure, particle by particle. This data is the mass M , radius R, (specific) kinetic energy E and modulus
of (specific) angular momentum J for each particle. These data are stored in the arrays M SE, R SE, T SE and
J SE in a common bloc (defined in VarSE.f)5. N−body units are to be used for all these data.

In most cases, you will also need a file MyRun%0000000000%ETOILES.xdr containing the basic stellar prop-
erties of the stars of each particle, its mass M∗ (in M⊙), type and “date of birth” (in yr, since t = 0). The
mass information is redundant with that in MyRun%0000000000%AMAS.xdr since M∗ ∝ M but when more
detailled stellar evolution will be included, M∗ will probably refer for the “zero-age” mass while M will track
mass loss. The date of birth is generally when the star acquirred its present type but may be modified in
collisions to account for “rejuvanation” (mixing in MS stars). It is used to determine the current (effective)
evolutionary age. There are currently for stellar types: 1, 3, 4, 5 for MS, WD, NS and BH; no giant phase!.
These data are stored in the arrays Met SE, (stellar mass) DNet SE, (birth date) iTet SE (stellar type) in a
common bloc (defined in VarSE.f). The numerical type of iTet SE is byte. All other arrays are real*8 (aka
double precision).

Typical usable number of particles range from 105 to 107. 103 − 105 can be used for test runs. It is
important to insist on the fact that the number of stars is completely independent of the number of particles
(unlike in other current Hénon-type MC codes). The number of stars is given by the parameter rNbEtoiles
in input_EvolAmas.

The easiest way to get initial condition files is to ask me! The next easiest way is to use some of my
programs to generate initial conditions:

• Creer_Amas_FdeE.F can create AMAS.xdr according to a variety of theoeritcal models: Plummer, King,
Wooley & Dickens (not tested), Isochrone, Dehnen with γ = 0, 1, 2, and stellar polytropes (Binney &
Tremaine 1987; Dehnen 1993). No central object can be included. Which model will be generated (as well
as what type of parameters have to be entered) depend on the value of the pre-processor variable _TYPE_
(see source file). When compiled for Plummer models, and called “create_plummer”, the command-line
syntaxe is

%create_plummer -N 1000000 -Name MyPlummer [-iseed 763367]

to create a file MyPlummer.xdr containing one million particles. The option -iseed can be used to
impose a different seed for the random number generator. When compiled for King models, and called
“create_king”, the command-line syntaxe is

%create_king -N 1000000 -Name MyKing -W 8 [-iseed 763367]

were -W is used to give the value of the dimensionless central potential W0. In this case a tiny file
MyPlummer_MAREE.xdr is also created to indicate the value of the tidal radius.

• Creer_Amas_EtaTN.F can create “eta-models” (Dehnen 1993; Tremaine et al. 1994) with or without a
central mass. This includes Hernquist and Jaffe models. The syntaxe is

4One step correspond to the modification of just one pair of particles. Therefore the step number can reach billions.
5SE comes from “Super-Étoile” the French for “super star” as it is how Hénon used to call particles to stress the fact that they

may represent more than one star each.

5

%create_eta -N 1000000 -Name MyEta -eta 1.5 -mu 0.03 [-iseed 763367]

where -eta if for the parameter η (the density at small radii is n ∝ Rη−3) and -mu is for the parameter
µ, the mass of the central object (in units of the total stellar mass, so the total mass of the system is
1 + µ). If µ > 0, a file MyPlummer_TN.xdr is created to contain the value of the mass of the central
object.

These models will have no mass spectrum (and no ETOILES.xdr file). To introduce a mass spectrum and
create the corresponding ETOILES.xdr file, one can use AppliquerFM3.F (sorry for the name!) which allow to
apply any initial mass function that can be represented as a piecewise power-law (see Appendix A2 of Freitag
& Benz 2002). Explanations about usage are given in the source code. For a Kroupa IMF, you would do

%appliquerfm3 -m "0.01,0.08,0.5,150" -a "0.3,1.3,2.3" MyModel MyModel_WithMF

so -m gives the list of limit-masses, -a the list of exponents (2.35 is Salpeter), MyModel the base name of
the input model without mass function and MyModel_WithMF the base name of the output model. At the
minimum files MyModel_WithMF.xdr and MyModel_WithMF_ETOILES.xdr will be created. The radii might be
rescaled a bit to enforce strict virialisation and keep with the definitioin of N−body units, therefore a file
MyModel_WithMF_MAREE.xdr can be created to contain the value of the rescaled tidal truncation radius.

To start a run, create a new directory. Inside copy your initial condition files with the following change of
names:

MyModel.xdr → MyRun%0000000000%AMAS.xdr

and
MyModel_ETOILES.xdr → MyRun%0000000000%ETOILES.xdr,
MyModel_MAREE.xdr → MyRun%0000000000%MAREE.xdr, etc

if it applies. Note that you need exactely 11 (eleven) “0” in the filenames. If you use gere_evolamas.pl, you
also need to put the executable evolamas and input_EvolAmas into this directory.

3.2 Output files

ME(SSY)**2 can produce a large variety of output files. They are presented in Table 5. Many of them are
for specialised application or testing purpose and only a few are of general use. FHR, the formats are xdr, to
preserve the full numerical precision of some data which might be crucial for restart6 and ASCII for readability
for data which are most useful for monitoring the run and plotting results. Most files are incremental, with
information appended to the file as the simulation proceeds. The important exception are “snapshot files” that
contain (in principle) the whole information about all particles and can be used for restart or detailed analysis.
In this case a different set of files is written each time a snapshot is dumped, with file name indicating the
step number, for instance MyRun%00001200000%AMAS.xdr for the mass and orbit information of all particles
at step 1200000.

The most important output file is the “master log file” MyRun%%Log.asc. It contains a wealth of information
about the evolution of the simulation, from a numerical and physical point of view. The same information
is also sent to stderr to entertain the user. The format is supposed more human- than computer-friendly
and a script Log2rdb.pl can be used to turn this file into a flat table format7 The information present in
MyRun%%Log.asc is presented in Table 6. For the time, I recommend to use the variable Tps_Ufokpl which
give it in Fokker-Planck units. In most other output file, no time information is given, only the step number
(iPas_Evol or similar name) or, if a time is given, it might not be in the proper units! Therefore it is safer
to use MyRun%%Log.asc to derive the iPas_Evol→ Tps_Ufokpl relation and used it determine time from step
number.

Most other ASCII files have a rather straightforward flat format. The contain data in columns and a header
to explain what the data is. The header are the first lines, starting with #. The last of these lines generally
looks like

6But again, saving 8-byte real data in ASCII with 15 decimal positions also preserves the full precision. Once compressed with,

e.g., gzip, such files are nearly as compact as their xdr counterpart. This is the way of the future!
7FHR the output format is “

rdb” with a two line header and tabs used to separate columns. It can be turned into the usual ASCII format I use for output

from fortran code with another script: rdb2fort.sh.

6

1: iPas_Evol 2: this_var 3: that_var 4: this_other_quantity

which means that the first column contains (the successive values of) iPas_Evol, the second contains this_var,
etc. MyRun%%RayLag.asc is an important output file whose header has a slightly different structure. The last
header line looks like

1: iPas_Evol 2: NbSE_liees 3: M_liee 4: Tps_amas || FracMasse : 5: R0001 (0.001000) \

6: R0010 (0.010000) 7: R0020 (0.020000)

which indicates that the 5th column contains the radius of the sphere containing 0.1% of the total mass, the 6th
column the radius for 1% and so on. These quantities are known as “Lagrange radii” and a sphere containing
a given fraction of the (remaining) cluster mass is a “Lagrange sphere”. Similarly, the file MyRun%%Segr.asc

ahs the following header

1: iPas_Evol 2: Tps_amas || Masse stellaire moyenne : 3 : m00050 (M<=0.0050) \

4 : m00100 (M<=0.0100) 5 : m00500 (M<=0.0500)

indicating that the third column contain the average stellar mass (in M⊙) for all particles inside the 0.5%
Lagrange sphere, etc.

If the code detects a error situation it will try and write a lot of information (such as a last snapshot) in
files with name starting with _RIP_ (e.g., _RIP_%00051278532%AMAS.xdr) before it exits to help post-mortem
investigations into the origin of the problem.

7

Table 1: Pre-processor variables in EvolAmas.mke. A leading * indicates a particularly important varaiable.

Variable Recommanded value What it does
_SURV_CROISS_TEMPS_ 0 If > 0, check that cluster time is actually increasing (!)
_SURVEILLE_SQRT_ 0 If > 0, check if argument of sqrt is ≤ 0 (debugging)
_TEST_MODIF_PROP_SE_ACT_ 0 ?
_NO_DF_ 0 If > 0, do not try to use a “call system(’df’)” to test

for free disk space
_NO_FLUSH_ 0 If > 0, do not use a “call flush” to force write into file

* _ECRIT_ETOILES_ 1 If > 0, write stellar data for each snapshot (in
*%ETOILES.xdr files)

_ECRIT_CB3C_ 0 If > 0, write data about 3-body binary heating (does not
work)

* _ECRIT_RAYLAG_ 1 If > 0, write Lagrange radii data (in MyRun%%RayLag.asc)
* _ECRIT_ANILAG_ 1 If > 0, write anisotropy data (in MyRun%%AniLag.asc)

_ECRIT_SEGR_ 1 If > 0, write average mass data (in MyRun%%Segr.asc)
_ECRIT_RELAX_ 0 If > 0, write global relaxation data (in

MyRun%%GlobRelax.asc)
* _ECRIT_COLL_ 1 If > 0, write data about each collision (in

MyRun%%Coll.asc)
_ECRIT_DUPLIC_ 0 If > 0, write data about particle duplication (in

MyRun%%Duplic.asc)
* _ECRIT_EVAP_ 1 If > 0, write data about each evaporation (in

MyRun%%Evap.asc)
_ECRIT_LC_ 1 If > 0, write data about each ”loss cone” event (in

MyRun%%LC.asc)
_ECRIT_CAPT_GW_ 1 If > 0, write data about each “extreme mass-ratio inspiral”

event (in MyRun%%GW.asc)
* _ECRIT_SUIVI_TYPES_STELL_ 1 If > 0, Follow distribution of the various stellar types (in

MyRun%%SuiviMS.asc, etc)
_ECRIT_SUIVI_SE_PART_ 0 If > 0, follow very closely some particles (in

MyRun%%SuiviSE.asc

_ECRIT_ARBRE_ 0 If > 0, write data about binary tree (in *%ARBRE.xdr files)
_ECRIT_PROFILPOT_ 0 If > 0, write grids used by code to estimate ρ and σ (in

*%PG.xdr files)
_ECRIT_TH_ 0 If > 0, write parameters for the selection of particle pairs

(in *%TH.bin files)
_ECRIT_RAND_ 0 If > 0, write internal variables of random generator (in

*%RAND.asc files)
_ECRIT_GRILLE_ ? If > 0, write grids to follow radial structure evolution (in

*%GRILLE.xdr files)
_ECRIT_PG_ 0 If > 0, write grid used by the code to compute density and

velocity dispersion (in *%PG.xdr files)
_ECRIT_TSCALE_ 1 If > 0, write some info about timescales (in

MyRun%%Tscale.asc)
_ECRIT_SPECMASSE_ ? If > 0, write some info about mass spectrum (in

MyRun%%MSpec.asc)
_ECRIT_STEVOL_ ? If > 0, write info about stellar evolution events (in

MyRun%%StEvol.asc)
_ECRIT_NATKICKS_ ? If > 0, write info about NS/BH natal kicks (in

MyRun%%NatKicks.asc)
_ECRIT_LAGQUANT_ ? If > 0, write lots of Lagrangian quantities (in

MyRun%%LagQuant.asc)
continued on next page

8

continued from previous page

Variable Recommanded value What it does
_MONITOR_MBINS_ ? If > 0, track evolution of particles in various mass bins (in

MyRun%%MbinRad.asc)
_MONITOR_STRONG_ENCOUNTERS_ 0 If > 0, keep track of “super encounters” (to simulate 2-

body relaxation) with large (cumulative) deflection angles
(in MyRun%%StrongEncounters.asc))

_WRITE_COLL_EXCEPTIONS_ 1 If > 0, write info about collisions requiring special treat-
ment (in MyRun%%CollExcept.asc)

_FOLLOW_SUBPOP_ 0 If > 0, follow closely subpopulation of particles (in
MyRun%%SubPop.asc

* _PRESENCE_TN_ ? If > 0, include central object (MBH generally)
* _TRONC_MAREE_ ? If > 0, include tidal truncation

_LIMITE_EXT_ 0 If > 0, include reflecting wall (broken!)
_EMPECHE_EVAP_RELAX_ 1 If > 0, do not allow a star to escape following a relaxation

“super-encounter”
_DEPL_ORBITAL_ 1 If = 0, do not move stars on their orbits

* _RELAXATION_ 1 If > 0, include 2-body relaxation
* _KICKS_ 0 If > 0, include large-angle scatterings
* _COLLISIONS_ ? If > 0, include collisions
* _DECHIREMENTS_ 1 If > 0, include tidal disruptions by MBH
* _DISPARITIONS_ 1 If > 0, include direct plunges into MBH
* _CAPT_GW_ 0 If > 0, include inspiral into MBH by GW emission
* _EVOL_STELL_ ? If > 0, include stellar evolution
* _NATKICKS_ 1 If > 0, include natal kicks for NSs and stellar BHs

_CHAUFF_BIN_3C_ 0 If > 0, include heating by 3-body binaries (does not work!)
_COLLISION_CHECK_ORBIT_OVERLAP_ 0 If > 0, do not allow collisions if orbits do not overlap in R

* _TYPE_COLL_ 10 Determine collision treatment. 1 for simplistic model (pure
meger or total disruption); 2 for Davies’ formulas in (Rauch
1999); 3 for point-mass gravitational scattering; 4 for toy-
model parametrisation; 9 non-physical, for tests; 10 for
SPH-inspired presciptions (Freitag & Benz 2005)

_TRAITEMENT_COLL_MS_RMN_ 2 Determine treatment of MS-compact collisions. 0 does
nothing (collisions still counted, stars and orbits not mod-
ified); 1 for complete disruption of MS star; 2 for tidal
disruption of MS star and partial accretion onto compact
object

* _COLL_REJUV_ 2 Determine treatment of collisional rejuvenation of MS stars.
0 to keep absolute age of more massive star; 1 resets age
to 0 in case of merger; 2 use central He mass to determine
effective age

* _HARDEN_SPH_COLL_TREATMENT_ 3 Determine if and how the SPH-inspired treatment of colli-
sions should be “hardened” to avoid problems (see Freitag
et al. 2006c).

_CONST_R_TID_DISRUP_ 0 If > 0, assume constant tidal disruption radius for all stars
* _TYPE_TREL_GW_ 0? Determine how to estimate relaxation time to test for GW-

inspiral into MBH. 0 uses (noisy) “encounter relaxation
time”; 1 uses some orbit average; 2 uses fixed value

_TYPE_FOR_MR_RELATION_ 0 If > 0, use this as the stellar type to determine M–R relation
(1:MS, 3:WD, 4:NS, 5:BH)

_FIGER_RMAR_ 0 If > 0, keep tidal truncation radius at initial value
_AJUST_PASSIF_ 0 If > 0, a fraction of steps will be “passive adjustment” ones

where particles are just moved on their orbits
continued on next page

9

continued from previous page

Variable Recommanded value What it does
_SURV_ADIAB_ 0 If > 0, make sure that time steps are shorter that a fraction

of the local timescale for potential change
_TYPE_LOG_COUL_ 0 Type of Coulomb logarithm used. 0 for Λ = γN∗; 1 for

local value Λ ∝ σ3Porb(G〈m∗〉)
−1; 2 for Λ = γN∗(R) +

MBH/〈m∗〉
_EVOL_UNE_SE_ 0 If > 0, only one particle is modified in a pair (experimental!

Energy not conserved!)
STATIQUE 0 If > 0, do not actually evolve anything (undo everything at

end of each step; for debugging)
_RELAX_NULLE_ 0 If > 0, undo relaxation at end of step (for debugging)
_COLL_NULLES_ 0 If > 0, undo collision at end of step (for debugging)
_DECHIR_NULS_ 0 If > 0, undo tidal disruption at end of step (for debugging)
_FORCER_CROISSANCE_TN_ 0 If > 0, use adhoc prescription for growth of central object
DUPLICATION 0 If > 0, duplicate each particle when the particle number has

become less or equal to half the initial number
* _VERBOSITUDE_ 5 Determine how verbose the code will be (on stdout)

_VERB_PERTES_ 0 Determine how verbose the code will be when a particle is
“lost” to any process

_VERB_STELLEVOL_ 1 Determine how verbose the code will be about stellar evo-
lution

_VERB_EVAP_ 0 Determine how verbose the code will be about evaporation
_VERB_COLL_ 0 Determine how verbose the code will be about collisions
_VERB_INTERP_RESCOLL_ 1 Determine how verbose the code will be about interpolation

of SPH collisions results
_SYM_M1_M2_ 1 If > 0, enforce mass-symmetry in the outcome of MS–MS

collisions
_RAY_LAG_SPECIAL_ 0 If > 0, use special choice for the default Lagrange fraction

(obsolete)

10

File name Compulsory? Format Role
input_EvolAmas y ASCII Contains most numerical and physical parameters for the run
MyRun%00000000000%AMAS.xdr1 y xdr Initial cluster structure (masses, velocity, positions of particles)
MyRun%00000000000%ETOILES.xdr n xdr Initial cluster structure (stellar masses, types [MS,WD,NS,BH] and ages)
MyRun%00000000000%TN.xdr n xdr Initial masses of the “central black hole” and “central gas reservoir”
MyRun%00000000000%MAREE.xdr n xdr Initial value of tidal truncation radius
Mbins.asc n ASCII Specification of the mass bins to be tracked (Lagrange radii, etc.)
FracRayLag.asc n ASCII Specification of the fractional mass for the overall Lagrange radii
FracSegrLag.asc n ASCII Specification of the fractional mass for the Lagrange spheres to track the average stellar mass
FracSTSLag.asc n ASCII Specification of the fractional mass for the Lagrange spheres used to track the various species
ParamStellEvol.asc n ASCII Parameters for stellar evolution (Max ZAMS mass to form WD, NS, etc.)
MassRadiusMS.asc n ASCII Main-Sequence Mass-Radius relation
Param_Croiss_Forc_TN.asc n ASCII Parameters determining “forced” growth of central object
Liste_SE_a_suivre.asc n ASCII List of IDs of particles to follow very closely
ListSubPop.asc n ASCII List of IDs of particles to follow closely (“subpopulation”)
Grille_ResColl_SPH.asc y if collisions ASCII Grid of outcome of collsions of MS stars (from SPH simulations)

Table 2: Input files. 1“MyRun” is the name of the run given in input EvolAmas.

File name Role
gere_evolamas.pl Perl script to “drive” simulation. Makes it easier to pass parameters and to request special snapshots
_EvolAmas%%DemSauv.asc Can be used to request snapshot save when some conditions are met if simulation is driven by gere_evolamas.pl

_LIRE_COND_SAUV_ Flag file. Forces gere_evolamas.pl to re-read conditions from _EvolAmas%%DemSauv.asc (erased once done)
_SAUV_DEMANDEE_ Flag file. Forces ME(SSY)**2 to save a snapshot as soon as possible (erased once done)
STOP Flag file. Forces (clean) stop (erased at [re]start)

Table 3: Control files.

1
1

Table 4: Parameters in input EvolAmas. A leading * indicates a particularly important parameter. Other parameters can generally be left at their
default value. In the “Type” column, “r” stands for real, “c” for character and “i” for integer.

Parameter Type Default Explanation
NomSimul c*80 ’_EvolAmas’ Run name. Used to form the name of input/output files
iVerbeux i 1 Determines how verbose the code will be (on the standard error)

* FacNbPasSauv r*8 5.0d0 A complete save (snapshot and all) is done every FacNbPasSauv*NbSE steps (NbSE is the
number of particles)

* FacNbPasSauvPart r*8 1.0d0 Same as FacNbPasSauv for partial save
* FacNbPasInfo r*8 1.0d0 General info about run will be given every FacNbPasInfo*NbSE steps

FacNbPasRecArbre r*8 2.0d0 Binary tree rebuilt from scratch every FacNbPasRecArbre*NbSE steps
FacNbPasRecRelax r*8 10.0d0 Relaxation parameters recomputed every FacNbPasRecRelax*NbSE steps
FacNbPasRecTpsAmas r*8 1.0d0 Cluster (median) time recomputed every FacNbPasRecTpsAmas*NbSE steps
FacNbPasDetTrelExtremes r*8 0.5d0 Extreme values of relax times recomputed every FacNbPasDetTrelExtremes*NbSE steps
FacNbPasDetEvap r*8 1.0d0 Check for evaporated stars performed every FacNbPasDetEvap*NbSE steps
FacNbPasTestDuplic r*8 0.5d0 Test for particle duplication performed every FacNbPasTestDuplic*NbSE steps
FacNbPasTestDemSauv r*8 0.1d0 Test for file asking for snapshot (_SAUV_DEMANDEE_) performed every

FacNbPasTestDemSauv*NbSE steps
FacNbPasRecalcTH r*8 0.5d0 The parameters for the function used to select particle pairs are recomputed every

FacNbPasRecalcTH*NbSE steps
* i_ini i*8 0 Initial step value (Code will attempt to read corresponding snapshot)
* i_fin i*8 2000000000 Code terminates when step counter reaches this value

T_fin r*8 1.0d5 Code termintes when time (in some units!?) reaches this value
* Frac_Trelax r*8 0.01d0 Requested maximum value for time step/relaxation time
* Frac_Tcoll r*8 0.01d0 Requested maximum value for time step/collision time

Frac_Tkick r*8 0.01d0 Requested maximum value for time step/large angle scattering time
Frac_Tadiab r*8 0.01d0 Requested maximum value for time step/potential change time
Frac_Taccr r*8 0.01d0 Requested maximum value for time step/central object growth time
Frac_Tevap r*8 0.01d0 Requested maximum value for time step/evaporation time

* Frac_Tevst r*8 0.025d0 Requested maximum value for time step/stellar evolution time
Tadiab_ini r*8 0.001d0 Initial value of time scale for potential evolutioin (just needs to be short)

* FactTrelMax r*8 1.0d3 Maximum ratio of time steps (misnomer!)
* NbSECouchePot i 25 Requested number of particles per cell in density radial grid (misnomer!)

FacMinPG r*8 0.5d0 Grid rebuilt if number of particle in any cell drops below FacMinPG*NbSECouchePot

FacMaxPG r*8 1.5d0 Grid rebuilt if number of particle in any cell raises above FacMaxPG*NbSECouchePot

* MasseEtoileDef r*8 1.0d0 Default value for average stellar mass (overriden by info in ETOILES.xdr file if present)
TypeEtoileDef i 1 Default stellar type (overriden by info in ETOILES.xdr file if present; 1 for MS stars)

* rNbEtoiles r*8 1.0d6 Total number of stars (independent of NbSE!)
continued on next page

1
2

continued from previous page

Parameter Type Default Explanation
iRand_Seed i 133111 Seed for random number generator
Frac_dt_max r*8 1.0d0 Obsolete, was used to determine value of sub-timestep

* TailleAmas_en_pc r*8 3.0d0 N-body length units in parsecs
NbSECoucheCB3c i 1000 Not used. Number of grid elements used to determine 3-body binary heating. Never worked

well.
FacNbPasRecCB3c r*8 0.5d0 Not used. 3-body binary heating recomputed every FacNbPasRecCB3c*NbSE steps

* M_TN_ini_def r*8 0.0d0 Default initial mass of central object, in fraction of total stellar mass (overriden by info in
TN.xdr file if present)

* NbSauv_Conserve i 5 Only 1 snapshot every NbSauv Conserve is kept. Others are erased as the simulation pro-
ceeds to save disk space

* R_Mar_ini_def r*8 1.0d30 Default initial value of tidal truncation radius in N-body units (overriden by info in
MAREE.xdr file if present)

* Gamma_relax r*8 0.14d0 Proportionalite coefficient in Coulomb log. Lambda=Gamma_relax*N star
frac_accr_Coll r*8 1.0d0 Fraction of mass liberated in collisions accreted by MBH
frac_accr_Dechir r*8 1.0d0 Fraction of mass liberated in tidal disruptions accreted by MBH
frac_accr_EvolSt r*8 1.0d0 Fraction of mass liberated by stellar evolution accreted by MBH
effic_conv_lum r*8 0.0d0 Efficiency for converting mass into light during accretion onto MBH
Fac_dt_accr_M r*8 0.01d0 The amount of mass in the central reservoir (disk) that can be accreted onto the MBH is

determined every Fac_dt_accr_M*NbSE steps
Fac_dt_accr_Npart r*8 10.0d0 The amount of mass in the central reservoir (disk) that can be accreted onto the MBH is

determined when the reservoir has accumulated more than Fac_dt_accr_Npart times the
mass of an average particle

Mu_mol_elec r*8 1.13d0 Average molecular mass per electron of stellar gas
fact_b0_kick r*8 2.0d0 Encounters with impact parameter smaller than fact b0 kick times the value for 90 degree

deflection are treated as large-angle scatterings
FracPas_AjustPassif r*8 0.0d0 Fraction of passive steps (change of orbital position only)
Rang_CC i 10 Number of particles subject to special ”central control”. Probably obsolete
FactR_CC r*8 0.5d0 Factor for distance to centre used in ”central control”. Probably obsolete
DeltaRang_Paire i 1 Rank difference for two particles in an interacting pair
StellMet_def r*8 0.02d0 Default stellar metallicity (0.02 is solar)
Fac_SldAvg_Tscale r*8 5.0d0 NbSECouchePot*Fac_SldAvg_Tscale is the number of particles for sliding average to com-

pute time scales in Calc Tcarac
Type_CtrObj_def c*16 ’TN’ Default type of central object (TN or MS)
CollMassLossFracDef r*8 0.0d0 Flat fractional mass loss in simplistic collisional treatment
CollDminDestr_MS_vs_RMN r*8 0.5d0 Distance below which the MS star is completely destroyed in encounters with compact stars

(for _TRAITEMENT_COLL_MS_RMN_=1)
continued on next page

1
3

continued from previous page

Parameter Type Default Explanation
CollAccrFrac_MS_on_WD r*8 0.0d0 Fraction of mass of the MS star accreted onto WD if MS star tidally disrupted (for

_TRAITEMENT_COLL_MS_RMN_=2)
CollAccrFrac_MS_on_NS r*8 0.0d0 Fraction of mass of the MS star accreted onto NS if MS star tidally disrupted (for

_TRAITEMENT_COLL_MS_RMN_=2)
CollAccrFrac_MS_on_BH r*8 0.5d0 Fraction of mass of the MS star accreted onto BH if MS star tidally disrupted (for

_TRAITEMENT_COLL_MS_RMN_=2)
Coef_Trlx_GW_Capt r*8 1.0d0 Fudge factor on trelax when compared to GW-inspiral time for GW-capture
Tmax_GW_Capt_Gyr r*8 1.0d30 Maximum inspiral time considered for GW captures, in Gyr
Trlx_GW_def_Gyr r*8 1.0d0 Relaxation time when a constant value is used to look for captures (_TYPE_TREL_GW_=2; not

recommended)
R_tid_disr_def_NB r*8 1.0d-7 Tidal disruption radius all stars in N-body units when _CONST_R_TID_DISRUP_>0

1
4

Table 5: Output files. xxxxxxxxxx” is the number of the step. The + sign(s) indicate particularly useful output. A − sign indicate a file you will
probably never need.

File name Incr Format Role
++ MyRun%xxxxxxxxxxx%AMAS.xdr n xdr Cluster structure (masses, velocity, positions of particles)
++ MyRun%xxxxxxxxxxx%ETOILES.xdr n xdr Cluster structure (stellar masses, types [MS,WD,NS,BH] and ages)

MyRun%xxxxxxxxxxx%TN.xdr n xdr Masses of the “central black hole” and “central gas reservoir”
MyRun%xxxxxxxxxxx%MAREE.xdr n xdr Value of tidal truncation radius
MyRun%xxxxxxxxxxx%TEMPS.xdr n xdr Individual times of particles
MyRun%xxxxxxxxxxx%CONS.xdr n xdr Data to allow accurate tracking of energy conservation in case of restart
MyRun%xxxxxxxxxxx%GRILLE.xdr n xdr Radial grids to plot profiles (ρ, σ, β, etc)

− MyRun%xxxxxxxxxxx%PG.xdr n xdr Radial grids used by code to estimate ρ and σ
−− MyRun%xxxxxxxxxxx%ARBRE.xdr n xdr Binary tree used by code to store rank and potential info
−− MyRun%xxxxxxxxxxx%TH.bin n bin Parameters for the selection of particle pairs (for debugging)
− MyRun%xxxxxxxxxxx%RAND.asc n ASCII Internal variables of random generator (for restart continuing with same random sequence)

++ MyRun%%Log.asc y ASCII Main log-file containing most of the useful information (also written to stdout)
++ MyRun%%RayLag.asc y ASCII Lagrange radii evolution
+ MyRun%%Segr.asc y ASCII Evolution of average stellar mass in Lagrange spheres
+ MyRun%%AniLag.asc y ASCII Evolution of anisotropy (averaged in Lagrange spheres)

++? MyRun%%LagQuant.asc y ASCII Lagrangian quantities evolution (can replace the previous 3 files)
MyRun%%MSpec.asc y ASCII Some info to track evolution of the mass spectrum

+ MyRun%%MbinRad.asc y ASCII Lagrange radii of particles in various bins of stellar mass
+ MyRun%%SuiviMS.asc y ASCII Lagrange radii, and various quantities in Lagrange spheres for MS stars
+ MyRun%%SuiviWD.asc y ASCII Same for white dwarfs
+ MyRun%%SuiviNS.asc y ASCII Same for neutron stars
+ MyRun%%SuiviBH.asc y ASCII Same for stellar black holes

MyRun%%Tscale.asc y ASCII Some (statistical) info about various time scales
MyRun%%CaptGW.asc y ASCII Info about “extreme mass-ratio inspirals” into central MBH (aka “GW captures”)
MyRun%%Coll.asc y ASCII Info about collisions
MyRun%%CollExcept.asc y ASCII Info about collisions that required special treatment (extrapolation)
MyRun%%Evap.asc y ASCII Info about stars lost from the cluster through “evaporation”
MyRun%%LC.asc y ASCII Info about “loss cone” events (tidal disruptions, inspirals, etc)
MyRun%%NatKicks.asc y ASCII Info about NS and BH natal kicks
MyRun%%StEvol.asc y ASCII Info about stellar evolution (star/particle turning into remnant)
MyRun%%StrongEncounters.asc y ASCII Info about “super encounters” (to simulate 2-body relaxation) with large (cumulative) de-

flection angles
MyRun%%SuiviSE.asc y ASCII Info about some particles followed very closely
MyRun%%SubPop.asc y ASCII Info about subpopulation followed closely

continued on next page

1
5

continued from previous page

File name Incr Format Role
MyRun%%GlobRelax.asc y ASCII Some global relaxation quantities
MyRun%%Duplic.asc y ASCII Log file of particle duplications
MyRun%%LogSauv.asc y ASCII Log file of “externally” requested snapshots
PID n ASCII PID of run (written once)
PARAMS.asc n ASCII Parameters actually used by run (written once)
CaracCode.asc n ASCII Value of many preprocessor variables at compile time (written once)
Units.asc n ASCII Physical units used by run (written once)
divers.asc y ASCII Bits of info of dubious value (self-described)
INFO y ASCII Info about pid, host, start time & date (self-described)
DONE n ASCII To indicate that the run has finished (contains time and hostname)

− _test_TMS.asc n ASCII Relation mass–MS lifetime (for checking purposes)
− _test_Remn.asc n ASCII Relation ZAMS mass → remnant mass and type (for checking purposes)
− _test_MRrelMS.asc n ASCII Main-Sequence Mass-Radius relation (for checking purposes)
− _test_ParamStellEvol.asc n ASCII Parameters for stellar evolution (for checking purposes)

1
6

Table 6: Quantities written in master log file MyRun%%Log.asc.

Quantity Explanation

Physical data (“DONNEES PHYSIQUES”)

iPas_Evol Step number
Tps_Ucode Cluster time in some mysterious, historical code units. It is the median

time of all particles
Tps_Ufokpl Time in Fokker-Planck units
Tps_en_yr Time in yrs
dTps_inf One sixth of particles have time smaller than Tps_Ucode-dTps_inf

dTps_sup One sixth of particles have time larger than Tps_Ucode+dTps_sup

Tps_moy Average time in code units
Sigma_Tps Dispersion of particle times in code units
NbSE_subsist Number of particles still in the cluster
Net_subsist Number of stars still in the cluster
M_amas Total stellar mass in the cluster in N−body units
M_amas_en_Msol Total stellar mass in the cluster in M⊙

M_TN Mass of central object in N−body units
M_rsrv Mass in the central gas reservoir in N−body units
iType_CtrObj Type of central object (1 for MS, 5 for BH)
Age_CtrObj_yr Evolutionary age of central object in yrs (if its is a VMS)
dMejec_evap Mass lost by evaporation (total, N−body units)
dMejec_coll Mass ejected from system form collisions
dMejec_evst Mass ejected from system from stellar evolution
dMejec_dechir Mass ejected from system form tidal disruptions
dMaccr_coll Mass accreted by central object form collisions
dMaccr_evst Mass accreted by central object form stellar evolution
dMaccr_dechir Mass accreted by central object form tidal disruptions
dMaccr_disp Mass accreted by central object form plunges through horizon
dMaccr_captGW Mass accreted by central object from GW-inspirals
Etot_amas Total energy of the system (N−body units)
Ecin_amas Total kinetic energy of the stars (N−body units)
Estell_grav Total gravitational energy of the stars (N−body units)
dEtot_evap Change of total energy by evaporation (total, N−body units)
dEtot_coll Change of total energy by collisions
dEtot_evst Change of total energy by stellar evolution (mass loss)
dEtot_dechir Change of total energy by tidal disruptions
dEtot_disp Change of total energy by plunges through horizon
dEtot_captGW Change of total energy by GW-inspirals
dEtot_bin3c Change of total energy by 3-body binary heating (doe not work)
dEtot_nk Change of total energy by natal kicks
R_maree Tidal truncation radius (N−body units)
Pot_ctr Central potential (N−body units)
Rho_ctr Central density (N−body units)
Sigma3D_ctr Central 3-D velocity dispersion (N−body units)
Nb_relax Number of steps with relaxation (“super-encounters”)
Nb_coll Number of steps with collision
Nb_kick Number of steps with large-angle scattering
Nb_dechir Number of steps with tidal disruption
Nb_disp Number of steps with plunge through horizon

continued on next page

17

continued from previous page

Quantity Explanation

Technical data (“DONNEES TECHNIQUES”)
iPasEvol Step number
Date Computer date
Heure Computer time
Tcpu Number of CPU seconds used
Viriel Virial ratio −(Ekin + Etot)/Etot (should be close to 0)
Erreur_rel_E Accumulated relative error in energy (should be close to machine preci-

sion)
Erreur_rel_M Accumulated relative error in mass (should be close to machine precision)
Nb_moy_VN_pos_orb_par_pas Number per step of rejections to find new orbital position (average since

last write)
Nb_moy_parcrs_arbre_par_pas Number per step of binary tree descents
Nb_moy_test_LC_par_pas Number per step of test for loss-cone entry
Nb_RejetPaire Number of pair rejections (since last write)
Nb_AnnulRelaxEvap Number of “super-encounters” prevented because they would result in

an ejection
Nb_AnnulRelaxCC Number of “super-encounters” prevented because of the “central control”
Frac_Pas_Relax Fractional number of steps with relaxation (i.e., super-encounters), gen-

erally 1
Dev_SuperRenc_moy Average deflection angle in “super-encounters”
Dev2_SuperRenc_moy RMS deflection angle in “super-encounters”
Frac_SuperRenc_Pi16 Fractional number of “super-encounters” with deflection angle θSE ≥

π/16
Frac_SuperRenc_Pi8 idem, θSE ≥ π/8
Frac_SuperRenc_Pi4 idem, θSE ≥ π/4
Frac_SuperRenc_Pi2 idem, θSE ≥ π/2
dR_rel_Renc_moy Average relative difference in radius for encountering pairs (δR ≡ 2(R2−

R1)/(R1 + R2))
dR_rel_Renc_max Maximum relative difference in radius for encountering pairs
Frac_Renc_dR_001 Fraction of encounters with δR ≥ 0.01
Frac_Renc_dR_01 idem, δR ≥ 0.1
Frac_Renc_dR_05 idem, δR ≥ 0.5
Frac_Renc_dR_1 idem, δR ≥ 1

References

Baumgardt, H. 2001, MNRAS, 325, 1323

Binney, J. & Tremaine, S. 1987, Galactic Dynamics (Princeton University Press)

Dehnen, W. 1993, MNRAS, 265, 250

Freitag, M. 2001, Classical and Quantum Gravity, 18, 4033

—. 2003, ApJ Lett., 583, L21

Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006a, ApJ, 649, 91

Freitag, M. & Benz, W. 2001, A&A, 375, 711

—. 2002, A&A, 394, 345

—. 2005, MNRAS, 358, 1133

Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006b, MNRAS, 368, 141

18

Freitag, M., Rasio, F. A., & Baumgardt, H. 2006c, MNRAS, 368, 121

Fukushige, T. & Heggie, D. C. 2000, MNRAS, 318, 753

Heggie, D. C. & Mathieu, R. D. 1986, in The Use of Supercomputers in Stellar Dynamics, ed. P. Hut &
S. L. W. McMillan (Springer-Verlag), 233

Hénon, M. 1973, in Dynamical structure and evolution of stellar systems, Lectures of the 3rd Advanced Course
of the Swiss Society for Astronomy and Astrophysics (SSAA), ed. L. Martinet & M. Mayor, 183–260

Hénon, M. 1975, in IAU Symp. 69: Dynamics of Stellar Systems, ed. A. Hayli, 133–149

Hénon, M. H. 1971a, Ap&SS, 13, 284

—. 1971b, Ap&SS, 14, 151

Rauch, K. P. 1999, ApJ, 514, 725

Spitzer, L. 1987, Dynamical evolution of globular clusters (Princeton University Press)

Tremaine, S., Richstone, D. O., Byun, Y., Dressler, A., Faber, S. M., Grillmair, C., Kormendy, J., & Lauer,
T. R. 1994, AJ, 107, 634

A License

Copyright (c) 2008, Marc Dewi Freitag (marc.freitag<at>gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

Note that, as stated in the documentation, the current version of the software requires the use of rou-
tines from the “Numerical Recipes in Fortran 77” (http://www.nrbook.com/a/bookfpdf.php) but is not
distributed with them as they are not covered by the present license. Users of the software should obtain their
own copy of these routines or replace them by other routines realising the same tasks.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

19

http://www.nrbook.com/a/bookfpdf.php

	Preamble
	References
	License and use of Numerical Recipes routines
	Very quick overview
	Units

	Installing ME(SSY)**2
	Use of xdr format
	Compiling the code

	Running ME(SSY)**2
	Input files and parameters
	The main parameter file (aka input_EvolAmas)
	Initial condition files

	Output files

	License

