

Eclipsing binaries in young star clusters

Jonathan Irwin and the Monitor project team:

Cathie Clarke, Gerry Gilmore, Simon Hodgkin, Mike Irwin, Adam Miller – IoA Suzanne Aigrain, Aude Alapini, Mark McCaughrean – Exeter Jerome Bouvier, Estelle Moraux – LAOG, Grenoble Leslie Hebb – St Andrews Keivan Stassun – Vanderbilt Fabio Favata – ESA Ettore Flaccomio – Observatorio de Palermo Dan Bramich – ING, La Palma Michael Ashley – UNSW

Motivation: Mass-radius relation

Lines: NextGen (solid), DUSTY (dashed), COND (dotted), at 1, 10, 100, 1000 Myr

Motivation: Planet formation

• Core accretion timescale problem:

• Dependence on host mass:

From Ida & Lin (2005)

- Rocky planets common around all spectral types
- Gas giants form in large numbers only around solar-mass stars

Related work

• Including:

- EXPLORE-OC (von Braun et al. 2004)
- UStAPS (Street et al. 2003, Bramich et al. 2005, Hood et al. 2005)
- PISCES (Mochejska et al. 2002, 2004, 2005)
- See Aigrain & Pont (MNRAS, in press) for a general discussion
- Hebb et al. (2004, 2006)

- Survey of mid-age open clusters (150 Myr 1 Gyr)
- M-dwarf EB candidate in M35
- Confirmed $0.47, 0.19 \ {\rm M}_{\odot}$ EB in NGC 1647 (150 Myr)
- Stassun et al. (2004, 2006)
 - $1.0, 0.7 \ \mathrm{M_{\odot}}$ and $0.054, 0.034 \ \mathrm{M_{\odot}}$ EBs in Orion
 - Some uncertainty in age, but $\sim 1-10~{\rm Myr}$

The Monitor project

Cluster	Age/Myr	M_{sat}	$M_{5\%}$	N_*
ONC	1 ± 1	0.75	0.04	1929
NGC 2362	5	1.14	0.07	587
h & χ Per	13	1.49	0.33	7756
NGC 2547	38.5	0.56	0.06	334
IC 4665	50	0.45	0.04	216
Blanco 1	90	0.80	0.06	148
M50	130	0.88	0.18	1942
NGC 2516	150	0.56	0.08	1214
M34	200	0.99	0.16	414
Total:				14540

- Transit survey in young open clusters and SFRs
 - Known age, metallicity, ...
 - Bloated primaries
- Concentrating on low- and very low-mass primaries
 - Deeper transits
 - Larger RV amplitudes
- Targets
 - Ages up to $\sim 200~{\rm Myr}$
 - Need to be relatively rich and compact
 - Small distance modulus to reach low-mass

Sensitivity estimates

- Method:
 - Based on Pepper & Gaudi (2005) semi-analytic method
 - Method extended to handle binaries as well as planets
 - Used real (observed) noise properties and sampling where possible
 - See Aigrain et al. (2007) for much more detail

Sensitivity estimates - II

• Eclipse/transit detectability:

	Binaries			Planets		
Name	$N_{\mathbf{C}}$	$N_{\mathbf{O}}$	$N_{\rm d}$	$N_{\mathbf{C}}$	$N_{\mathbf{O}}$	N_{d}
ONC	167.3	57.3	27.8	135.0	47.8	2.3
NGC 2362	45.6	11.0	4.7	37.1	11.3	0.0
h & χ Per	648.9	106.0	67.0	631.9	118.1	1.2
IC 4665	21.5	5.8	4.6	14.3	4.3	3.1
NGC 2547	30.4	5.1	3.9	20.7	3.9	0.9
Blanco 1	10.3	0.9	0.6	8.0	1.0	0.5
M50	160.0	12.7	5.4	127.0	13.4	0.8
NGC 2516	103.0	8.4	1.5	76.9	8.4	0.7
M34	45.1	3.4	1.4	34.1	3.5	0.8
Total	1230.7	207.3	114.0	1084.4	209.4	8.6

• RV followup:

- 100% of EBs with detectable eclipses produce RV modulations detectable with VLT/FLAMES
- 25% can be detected on a 4m
- Only 29% of the planets in the ONC, and 10% of those in NGC2547, produce a detectable RV signal
- See Aigrain et al. (2007)

Photometry

- Candidate cluster members selected in V, V I CMDs
- High-cadence (< 15 min) aiming for 100 hours per cluster in i-band
- Better than 1% to $i \sim 19$ (CTIO), $i \sim 17$ (INT)

Candidates

- Combination of visual and automatic techniques
- ~ 35 high-quality candidates, in 5 clusters ($\sim 1 - 200$ Myr)
- 4 partially solved
 - 2 appear to be genuine ONC EBs
 - 2 in the field towards NGC 2362, NGC 2547
- 7 need more data to say
- Most followup done on brightest objects (higher field contamination)

NGC 2362

A new ONC PMS EB

- Membership probability 99% (Jones & Walker 1988)
- Lithium detected (next slide)
- Components $0.26,\,0.15~M_{\odot}$
- Third light ($\sim 20\%$ of L)

ONC PMS EB: Lil 6708 Å

• EWs smaller than expected:

Primary	$0.35\pm0.05~{\rm \AA}$
Secondary	$0.18\pm0.04~{\rm \AA}$
Tertiary	0.12 ± 0.05 Å

- May indicate depleted Li?
- Tertiary close to ONC systemic velocity ⇒ ONC member, probably physical triple
- High-res imaging observations to attempt to resolve it?
- Still need $T_{\rm eff}$ measurements to put on H-R diagram
- See Irwin et al. (MNRAS, submitted)

Future work

- Observations: radial velocities (NTT, VLT), h/χ Per photometry (CFHT)
- Search for shallower eclipses / in highly variable objects
- Secondary science:
 - Continuation of rotation work esp. membership confirmation
 - Flares in ONC (and possibly others)
 - X-ray optical connection in ONC with COUP

Summary

- We have a huge time-series database in ~ 6 young clusters
- 1 confirmed EB with masses and radii (Irwin et al., submitted)
- Many more candidates awaiting spectroscopic follow-up
- Rotation results (see Irwin et al. 2006, 2007, in prep)
- Host of other science (data waiting to be exploited)
- Thanks due to:
 - Maria Rosa Zapatero Osorio LAEFF/INTA
 - Eduardo Martín IAC
 - Gwendolyn Meeus Potsdam
 - Alexis Brandeker and Ray Jayawardhana Toronto
 - Jon Holtzman and Thierry Morel NMSU 1m and Mercator
 - Richard Alexander and Patricia Verrier Observing

http://www.ast.cam.ac.uk/research/monitor