

The Monitor project – Searching for low-mass eclipsing binaries and transiting planets in young open clusters

Jonathan Irwin and the Monitor project team

Motivation - I

- Planet formation
 - Core accretion (Pollack et al. 1996 standard case model)

* Core masses seem too high

* Timescales too long (eg. Haisch et al. 2001 for disc dissipation)

Motivation - II

- How bright and large are young planets and BDs?
 - Measurements and models do not seem to agree (Close et al. 2005)

- Uncertainties at early ages (eg. Baraffe et al. 2003)

Motivation - III

- Mass-radius relation (Pont et al. 2005)

- * Lack of objects with M, R in the BD regime
- * Those found so far have uncertain (and mostly old) ages
 - \Rightarrow Look for low-mass EBs in young open clusters
 - \rightarrow Empirical mass determination (one of most accurate methods)

The Monitor project

- Transit survey
 - Wide-field optical mosaics
 - $2-4 \mathrm{m}$ telescopes
 - Monitor 1000s of stars
 - RV followup $\rightarrow M$, R
- In young open clusters and SFRs
 - Known age (and metallicity)
 - Bloated primaries → improved alignment probability
- Concentrating on low- and very low-mass primaries
 - Deeper transits
 - Larger RV amplitudes make follow-up easier

Problems

- Strong bias toward short periods (eg. Gaudi et al. 2005)
- Contamination from (background) blends
- Requires a large number of observations per field
 - Can be partly mitigated by observing strategy
- Activity and accretion-related variability impede detection
 - Variability filters
 - Simultaneous V and I monitoring (transits achromatic whereas variability tends not to be)
- Faint stars and RV jitter may impede RV follow-up
 - $0.03~M_{\odot}$ BD in $3~{\rm day}$ orbit around M_{\odot} star \rightarrow RV amplitude $3~{\rm km~s^{-1}}$
 - $1~M_{Jup}$ planet in 3~day orbit around M_{\odot} star \rightarrow RV amplitude $140~m~s^{-1}$
 - Expect jitter $\sim 60~{\rm m~s^{-1}}$ at $3~{\rm Myr}$

Related work

- Including:
 - EXPLORE-OC (von Braun et al. 2004)
 - St Andrews Open Cluster Planet Search (Street et al. 2003, Bramich et al. 2005)
 - PISCES (Mochejska et al. 2002, 2004, 2005)
- No detections so far
- Hebb et al. 2004

- Survey of mid-age open clusters (180 Myr 1 Gyr)
- M-dwarf EB candidate in M35
- Secondary eclipse detected in original INT/KPNO survey
- Primary eclipse detected during Monitor Jan 2005 INT run!

Targets

- Ages up to $\sim 200~{\rm Myr}$
- Need to be relatively rich and compact
- Small distance modulus to reach low-mass

Photometric precision

- $\bullet\,$ We can reach peak precision of $\sim 2\ \rm mmag$
- Better than 1% to $i \sim 19$ (CTIO), $i \sim 17$ (INT)

• Eclipse depths due to hot Jupiters $\sim 1\%$, EBs 1-10%

Eclipse candidate selection

- Search lightcurves of unblended stars
 - Uses transit search algorithm of Aigrain & Irwin (2004)
 - ONC there is too much variability so do by eyeball instead
- Remove any rotational modulation where necessary
- Determine eclipse parameters
 - Check duty cycle (duration / period) consistent with eclipses
 - Obtain approximate primary M, R from colours and models
 - Transit depth gives estimate of minimum secondary radius
 - Transit duration gives estimate of minimum secondary mass
 - See Seager & Mallén-Ornelas 2003 for much more detail

Candidates

• 12 high-quality candidates, 4 lower-quality

M34, M50, NGC 2362

ONC

Spectroscopic follow-up

- Establish membership and spectral type of primary
- Multi-epoch RV measurements to constrain secondary mass
- WHT ISIS December 2005
 - Single-epoch RV (to 4 km s^{-1}) + classification (bright targets)
 - More epochs via collaboration

Candidate ONC-1-290 blue arm spectrum: M4-M5

Candidate ONC-1-290 red arm spectrum

Rotation periods – M34

• Can constrain rotational evolution 1 - 200 Myr

Conclusions and future work

- Working to obtain a sample of young low-mass EBs
- Could discover first young transiting planet in an open cluster
- All at well-known ages
- We have a number of candidates requiring follow-up
 - First follow-up from WHT ISIS looks promising
 - Spectroscopic time very hard to come by
- More photometry and spectroscopy to come...
 - Including WFCAM survey (near-IR photometric monitoring)
- Secondary science:
 - Rotation period studies in all clusters (where possible)
 - Flares in ONC (and possibly others)
 - X-ray optical connection in ONC with COUP

Thanks

- Simon Hodgkin my supervisor
- Suzanne Aigrain original proposal and a lot of help
- Richard Alexander for observing (INT)
- **Dan Bramich** for observing (INT)
- Jérome Bouvier, Cathie Clarke and Estelle Moraux for many useful discussions, CFHT applications
- Leslie Hebb for observing (CTIO)
- Mike Irwin for observing (INT) and much of the pipeline
- **Patricia Verrier** for observing (INT)

More information:

http://www.ast.cam.ac.uk/~suz/monitor/monitor.php