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Observations of rotation 
in young stars

Bouvier et al. (1997)
Compilation of rotation rates derived from v sin i 
for low mass TTauri and post TTauri stars and G-
type members of young open clusters

TTauri stars are slower rotators than post-
TTauris

The fastest rotators are observed near the ZAMS

After the ZAMS, all stars quickly converge to a 
common, low rotation rate
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observational results that can be used to constrain the models
in Sect. 5 and proceed to the confrontation between the mod-
els and the observations in Sect. 6 for stars in the mass-range
0.5–1.1M!. In Sect. 7, we discuss the plausibility of the disk
lifetimes implied by the model, compare the predictions of this
model to those of alternative models proposed so far, and we
argue that a good match to the observations can be reached
assuming that angular momentum is efficiently transported in
stellar interiors.

2. Model assumptions

The model relies on the 3 following assumptions:
(H1) Nearly solid body rotation: we assume that solid body

rotation is an acceptable approximation to the actual rotational
profile of solar-type stars for the purpose of modeling the evo-
lution of their surface rotation rate, namely:

Ω(r ≤ R!) " Ωsurf = Ω!

at any time during the evolution. By this, we do not claim that
stars rotate strictly as solid bodies but merely that any depar-
ture from solid body rotation is small enough so that it can be
neglected for the purpose of modeling the evolution of surface
rotation. More precisely, for a given total stellar angular mo-
mentum, the surface velocity computed under (H1) is assumed
to be not markedly different from what it would be if com-
puted from the (unknown) actual rotational profile. Consider
the following illustrative example. A fiducial value for the total
angular momentum of a solar-mass star on the main sequence is
2 1048 g cm2 s−1. Assuming uniform internal rotation, this leads
to a surface velocity of 2 km s−1. If, instead, the inner radiative
core (r ≤ 0.2R!) rotated 3 times faster than the surface, the
same value of total angular momentum would lead to a surface
velocity of 1.8 km s−1. In this instance, the difference in surface
velocity computed for solid-body and for differential rotation is
negligeable. As a consequence of (H1), the model does not allow
for strong radiative core/convective envelope decoupling which
is a trademark of other classes of models (e.g., McGregorq &
Brenner 1991, Keppens et al. 1995). Instead, we assume that any
sharp radial velocity gradients that tend to develop during PMS
evolution, as the inner radiative core grows, are quickly reduced
by an efficient redistribution of angular momentum throughout
the stellar interior.

Except for the Sun, neither observations nor theory tell us
what is the actual state of internal rotation of solar-type stars dur-
ing their evolution. Depending on which physical mechanism is
thought to dominate the transport of angular momentum in the
stellar interior, one may expect anything from large differential
rotation (from, e.g., hydrodynamical instabilities acting on evo-
lutionary timescales) to quasi-solid body rotation (from, e.g.,
dynamical timescale HD instabilities, MHD processes, trans-
port by internal waves). Helioseismology, however, does pro-
vide insight into the rotational profile of the Sun, with quite
unexpected results (Gough 1990). Latitudinal differential rota-
tion appears to be important in the solar convective zone, while
the outer part of the solar radiative core, from 0.4 to 0.7 R!,

exhibits rigid rotation. Rotation in the inner core (r≤0.2R!) is
not yet fully constrained by helioseismology data, and contra-
dictory claims have been made as to whether it rotates faster or
slower than the outer core (e.g., Elsworth et al. 1995, Tomczyk
et al. 1995, Ulrich 1993).

The largely unforeseen results of helioseismology clearly
show that observations rather than theory still drive our knowl-
edge of angular momentum transport in stellar interiors. Since
the dominant physical mechanisms for angular momentum
transport have not been securely identified yet (HD or MHD
processes, wave transport, etc...), it may appear premature to
include them a priori in the model. Furthermore, due to uncer-
tainties in the detailed physics of these processes, none can be
modeled in a deterministic way from first principles. Instead,
any such process would have to be introduced in the model in a
parametrized way (see, e.g., Pinsonneault et al. 1989, Chaboyer
et al. 1995), and the multiplication of adjustable parameters in
the models adds considerable leverage and uncertainty to an al-
ready not-so-well constrained problem. These are the main rea-
sons why we adopt here a more empirical approach. Namely, we
bypass the detailed physics of angular momentum transport in
the stellar interior by postulating the internal rotational profile.
This approach minimizes the number of adjustable parameters
and is to be considered as a first step to get clues to the physics
of the transport of angular momentum inside stars.

Nearly solid body rotation is a physically plausible expecta-
tion, and is actually observed in the Sun’s radiative core, if the
transport of angular momentum is dominated by short timescale
HD instabilities (e.g., Endal & Sofia 1978, Pinsonneault et al.
1989, Tassoul & Tassoul 1989), MHD processes (e.g., Char-
bonneau 1992, McGregor & Charbonneau 1994) or internal
waves (Schatzman 1993, Zahn et al. 1996, Kumar & Quataert
1997). An additional and important reason to chose this rota-
tional profile in our approach is that it minimizes the number
of adjustable parameters of the model, which is therefore better
constrained by observational data. Within the same empirical
approach, other choices of rotational profiles are possible and
some have been explored in alternative models, at the expense
of a larger number of adjustable parameters (e.g., Keppens et
al. 1995). We return to the plausibility and implications of these
different choices in the discussion.

(H2) Disk locking. As long as the young star interacts with
its circumstellar disk, it retains essentially constant angular ve-
locity, i.e.:

Ω(t ≤ τdisk) " Ωo

where Ωo is the initial angular velocity and τdisk is the disk
lifetime.

This assumption rests upon recent theoretical work and sup-
porting observations of the rotation rates of T Tauri stars. It has
been known for long that solar-mass T Tauri stars are mild rota-
tors with equatorial velocities mostly in the 10–30 km s−1 range.
On the other hand, Hartmann & Stauffer (1989) pointed out that
if low-mass T Tauri stars accrete angular momentum from their
accretion disks at a typical mass accretion rate of 10−7M!yr−1,
they ought to be rotating much more rapidly (100–200 km s−1).
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Fig. 1.—Magnetic star-disk interaction

Fig. 2.—Differential torques in the disk predicted for and ,b p 1 g r !
c

for BP Tau (see text). The system is shown in the equilibrium state, where
the net torque on the star is zero, requiring a stellar rotation period of 7.5 days
(so ).R ≈ 6.4Rco ∗

is relative to the star, so a positive torque spins the star up and
thus spins the disk down.
The magnetic field cannot be perfectly frozen-in to the gas

of the disk. Instead, it diffuses or reconnects through the disk
azimuthally at some speed, (UKL), where is thev ≈ gh /h h

t td

magnetic diffusivity (we use the subscript “t” to suggest a
turbulent value) and h is the local, vertical scale height of the
disk. For a standard a-disk (Shakura & Sunyaev 1973), v p

d

, where is the orbital speed, , andbv g v b { (a/Pr )(h/r)
tKep Kep

Pr
t
is the turbulent Prandtl number (pturbulent viscosity di-

vided by ). Since both and are likely to have weakh h/r a/Pr
t t

(though unknown) dependences on r, we assume b is constant.
The radial dependence of the magnetic torque is mainly dom-
inated by the quick falloff of the dipole magnetic field ( ),"3

r

and so a small radial dependence of b will not much affect our
results (AC96).
In general, b is a simple scale factor that compares tov

d

. It measures the coupling of the magnetic field to the disk:vKep
corresponds to strong coupling and to weak. Theb K 1 b k 1

value of b is unknown (AC96 used ). Typical a-diskb p 1
parameters give a limit of and a likely value of a fewb ≤ 1
orders of magnitude lower. For reasonable fiducial parameters,

cm2 s"1)( )(100 km s"1/ ). However,"2 16b p 10 (h /10 R /h v
t , Kep

given the uncertainties, we keep b as a free parameter.
Where the field connects the star and disk, the magnetic twist

(and so ) will increase, until the field can slip through thev
d

disk at a rate equal to the differential rotation rate. Thus, we
expect a steady state in which

"1 3/2g p b [(r/R ) " 1]. (3)co

Note that , since the differential rotation is zerog(R ) p 0co

there. For , the twist increases to infinity.r 1 Rco

Several recent theoretical and numerical studies of the star-
disk interaction (see UKL and references therein; Lynden-Bell
& Boily 1994; Agapitou & Papaloizou 2000) have shown with
certainty that, as a dipole field is twisted this way, the magnetic
torque reaches a maximum for finite g but then reduces back
to zero for larger values. This occurs because, when the mag-
netic field is twisted enough so that the magnetic pressure
associated with overcomes the poloidal field lines, the latterBf

will “inflate,” opening to infinity at midlatitudes. The star and
disk then become causally disconnected because open field
lines cannot convey torques between the two. The critical twist
at which this happens is very nearly (e.g., UKL).g p g ≈ 1

c

The opening of field lines by this process can be added to
the theory. For simplicity, we assume that the star is connected
to the disk, as described above, at all locations where the twist
is less than the critical value . Where , the disk andg g ≥ g

c c

star are disconnected, and so the differential magnetic torque
there is zero. In other words, this process determines the outer
radius of closed stellar field lines, . From equation (3), weRout

find that . AC96 assumed that the star2/3
R p (1# bg ) Rout c co

is connected to the disk over a very large radial extent
( ), which is equivalent to the assumption that .R r ! g r !out c

A combination of equations (2) and (3) reveals the radial
dependence of the differential magnetic torque ( ). Figure 2dt

m

shows all differential torques (per ) in the disk, as a functiondr
of radius (normalized to ), assuming and (i.e.,R b p 1 g r !co c

the AC96 solution). For the figure, we adopt representative
system parameters from the well-studied CTTS BP Tau:

yr"1, , and"8
Ṁ p 3# 10 M R p 2 R M p 0.5 M

a , ∗ , ∗ ,

(Gullbring et al. 1998), and kG (Johns-Krull et al.B p 2∗
1999b). The stellar rotation period is 7.5 days (see § 3).
The lines in Figure 2 labeled “accretion” and “magnetic”

represent the differential accretion and magnetic torques, dt
a

and , from equations (1) and (2), respectively. The steadydt
m

state condition requires the disk to structure itself such that the
net differential torque everywhere equals . So when externaldt

a

magnetic torques ( ) act on the disk, there are torques internaldt
m

to the disk (e.g., via the magnetorotational instability; Balbus
& Hawley 1991) to counteract them and always provide a
differential torque defined by , represented bydt { dt " dt

i a m

the dashed line in Figure 2. From the figure, it is evident that
is strongest near the star, where the magnetic field is strong,dt

m

and acts to spin up the star inside . At , goes todt R R dt
m co co m

zero, since the field is not twisted there (eq. [3]). Beyond
, the twist increases, and so becomes stronger, now actingR dtco m

to spin down the star. Since the dipole field strength decreases
faster than the increase of g, reaches a maximum (in ab-dt

m

solute value) and then approaches zero as .r r !
At the location where (and ), the torquedt p dt dt p 0

m a i

from the stellar magnetic field is all that is necessary to provide
. Thus, all of the specific angular momentum of the diskṀ
a

material at that location will end up on the star. This defines
the radius (Fig. 2, dotted line), where the disk is truncated,R

t

and from where accretion will be magnetically channelled along
field lines onto the star (K91; not shown in Fig. 1). So the net
torque on the star from the accretion of disk material, , ist

a

obtained by integrating equation (1) from to the surface ofR
t

the star. Similarly, the net magnetic torque, , is obtained byt
m

Matt & Pudritz (2004)

First proposed by Königl (1991)
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Fig. 1.—JHKL excess/disk fraction as a function of mean cluster age. Ver-
tical error bars represent the statistical errors in our derived excess/disk!N
fractions. For all star-forming regions except NGC 2024 and NGC 2362, the
horizontal error bars represent the error in the mean of the individual source
ages derived from a single set of PMS tracks. The age error for NGC 2362
was adopted from the literature. Our estimate of the overall systematic un-
certainty introduced in using different PMS tracks is plotted in the upper right
corner and is adopted for NGC 2024. The decline in the disk fraction as a
function of age suggests a disk lifetime of 6 Myr.

isochrone fitting as discussed earlier. For comparison we also
plot excess fractions in Taurus and Chamaeleon I (open trian-
gles), derived from similar JHKL observations in the literature
(i.e., Kenyon & Hartmann 1995; Kenyon & Gómez 2001). The
ages for Taurus and Cha I were obtained from Palla & Stahler
(2000). NGC 1960 is not included in the figure since our ob-
servations of this cluster extend only to greater than 1 M, stars,
whereas in the other clusters we are complete to ≤1.0 M,.
The dot-dashed line in Figure 1 represents a least-squares

fit to the data obtained in our L-band survey (filled triangles).
Vertical error bars represent the statistical errors in our!N
derived excess/disk fractions. Horizontal error bars show rep-
resentative errors of our adopted ages. The error bars for the
ages of the Trapezium, Taurus, IC 348, Cha I, and NGC 2264
represent the error in the mean of the individual source ages
derived from a single set of PMS tracks. In order to estimate
the overall systematic uncertainty introduced in using different
PMS tracks, we calculated the mean age and the standard de-
viation of the mean age for NGC 2264 ( Myr) from2.6! 1.2
five different PMS models (Park et al. 2000; Palla & Stahler
2000). This latter quantity illustrates the likely systematic un-
certainty introduced by the overall uncertainties in the PMS
models. This is plotted in Figure 1. For stars with M,M ≤ 1
and ages ≤5 Myr, the overall uncertainty in the ages for all
regions is likely within about 1–1.2 Myr. The plotted error for
NGC 2024 reflects this uncertainty. The age error for NGC
2362 was adopted from the literature (Balona & Laney 1996).

5. DISCUSSION

We have completed the first sensitive L-band survey of a
sample of young clusters that span a sufficient range in age

(0.3–30 Myr) to enable a meaningful determination of the time-
scale for disk evolution within them. Clusters appear to be
characterized by a very high initial disk frequency (≥80%),
which then sharply decreases with cluster age. One-half the
disks in a cluster population are lost in only about 3 Myr, and
the timescale for essentially all the stars to lose their disks
appears to be about 6 Myr.
The precise value of this latter timescale to some extent

depends on the derived parameters for the NGC 2362 cluster.
Our quoted timescale of 6 Myr could be somewhat of a lower
limit for two reasons. First, it is possible that a slightly higher
disk fraction for NGC 2362 could be obtained with deeper L-
band observations that better sample the cluster population
below 1 M,. Our earlier observations of IC 348 and the Tra-
pezium cluster show that the disk lifetime appears to be a
function of stellar mass (HLL01), with higher mass stars losing
their disks faster than lower mass stars. However, we note that
much deeper JHK observations (Alves et al. 2001) that sample
the cluster membership down to the hydrogen-burning limit
yield a JHK disk fraction of essentially 0%, giving us confi-
dence in the very low disk fraction derived from our present
L-band observations. Second, the age of NGC 2362 is depen-
dent on the turnoff age assigned to only one star, the O star
t CMa. This star is a multiple system, and its luminosity as-
signment on the H-R diagram is somewhat uncertain (van Leeu-
wen & van Genderen 1997). Correction for multiplicity would
lead to a slightly older age. However, the quoted 1 Myr error
in its age likely reflects the magnitude of this uncertainty (Bal-
ona & Laney 1996). On the other hand, if, for example, the
errors were twice as large as quoted, the cluster could have an
age between 3 and 7 Myr. The corresponding age and the
overall disk lifetime derived from a least-squares fit to the data
would be between 4 and 8 Myr. Even if the timescale for all
disks to be lost was as large as 8 Myr, our survey data would
still require that one-half the stars lose their disks on a timescale
less than 4 Myr. Finally, an even older age for NGC 2362
would likely indicate that the decrease in disk fraction with
time does not follow a single linear fit; that is, after a rapid
decline during which most stars lost their disks, the disk fraction
in clusters would decrease more slowly, with a small number
of stars (∼10%) retaining their disks for times comparable to
the cluster age. On the other hand, we estimate the dynamical
age of the S310 H ii region, which surrounds and is excited
by t CMa, to be ∼ yr for pc and6r /v ∼ 5# 10 r p 50H ii H iiexp

km s!1 (e.g., Lada & Reid 1978; Jonas, Baart, &v p 10exp

Nicolson 1998). This is consistent with the turnoff age of the
cluster derived from the H-R diagram and supports our estimate
of ∼6 Myr for the overall disk lifetime.
We point out that our L-band observations directly measure

the excess caused by the presence of small (micron-sized), hot
(∼900 K) dust grains in the inner regions of the circumstellar
disk and these observations are sensitive to very small amounts
(∼1020 g) of dust. We expect that, if there is gas in the disk,
turbulent motions will always keep significant amounts of small
dust particles mixed with the gas (Ruden 1999); thus, dust
should remain a good tracer of gas in the disks as they evolve
to form planets. Indeed, recent observations of H2 in older
debris disks appear to confirm this assertion (Thi et al. 2001).
Consequently, stars that did not show infrared excesses are
likely to be significantly devoid of gas as well as dust. There
is also evidence that the presence of dust in the inner disk
regions is linked with the presence of dust in the outer disk
regions (i.e., AU) where most planet formation is likelyr 1 1
to occur. Earlier, HLL01 noted a strong correlation between



Initial distribution
Disk locking implies distribution of periods of classical TTauri stars (which 
have always been locked to their disks) should reproduce initial distribution
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by solving the Lane-Emden equation with a polytropic index
n = 1.5. The initial radius of these polytropic models has been
chosen large enough in order to get central temperatures below
5 105 K. The initially homogeneous stars have a hydrogen mass
fraction X = 0.687 for Z = 0.02, the relative heavy element
abundances coming from Anders & Grevesse (1989).

The equation of state is analytic. It includes the ionization of
H, He, C, N and O and the electrostatic corrections through the
statistical model of Debye-Hückel for partially ionized regions
and through the interpolation formalism of Koester (1976) for
completely ionized matter. Generalized Fermi-Dirac integrals
have been very accurately computed for the treatment of elec-
tronic degeneracy.

At low temperatures, i.e. below 8000 K, we use the Alexan-
der & Ferguson (1994) opacity tables, very well suited for cool
red giant envelopes and atmospheres. At temperatures above
8000 K, we use the OPAL opacity tables computed by Rogers &
Iglesias (1992). Finally, we used the Hubbard & Lampe (1969)
program to generate conductive opacity tables corresponding
to the same chemical compositions as for the OPAL radiative
opacity tables.

The stellar structure is integrated from the center to a very
low optical depth (τ = 0.001) in the atmosphere. For optical
depths τ < 10, the temperature profile and derivative quantities
(such as the radiative pressure and gradient) are constrained by
atmosphere models of Plez (1992) for Teff < 3900 K, of Eriks-
son (1994, private communication) up to 5500 K; above this
effective temperature, atmosphere models are generated with
the Kurucz atmosphere program.

The structure of the convective regions is computed using
the classical Mixing-Length Theory (MLT), as prescribed by
Kippenhahn et al. (1968). Our models are standard in the sense
that the Schwarzschild criterion is considered to delimit the
convective zones and neither overshooting nor semi-convection
have been considered in the present computations. The ratioα of
the mixing-length free parameter over the pressure scale height
has been put to a value of 1.5, i.e. rather close to α! = 1.64
with which we fit the solar structure.

The nucleosynthesis equations are solved using the Wagoner
(1969) numerical technique. The abundance evolution of all
the stable and unstable nucleides involved in proton burning
are followed through a nuclear reaction network for which the
nuclear reaction rates are taken from Caughlan & Fowler (1988).
The nuclear screening factors are parameterized by using the
Graboske et al. (1973) formalism, including weak, intermediate
and strong screening cases.

3.2. Initial conditions

Solar-type stars retain the memory of their initial angular mo-
mentum up to an age of a few 108 years (and up to almost 1
Gyr for the very low mass stars). It is therefore of prime im-
portance that the initial conditions injected into the model bear
some ressemblance with the rotation rates actually observed for
the youngest stars. We argue here that the distribution of the

Fig. 1. Evolution of the stellar radius, radius of gyration and moment
of inertia of 0.5, 0.8 and 1M! stars. Black dots indicate the time at
which the star appears on the stellar birthline (for a mass-accretion rate
of 10−5M!yr−1, Hartmann et al. 1997), and empty dots show the time
at which the radiative core starts to develop.

Fig. 2. Histogram of rotational periods of low-mass classical T Tauri
stars.

rotational periods of accreting T Tauri stars (CTTS) provides
the proper initial conditions.

Fig. 2 shows the distribution of Prot of CTTS (Bouvier et al.
1993, 1995 and references therein, Edwards et al. 1993a). The
distribution strongly peaks at a characteristic rotational period
of 7–9 days. We argued in the previous section that the shape
of the distribution supports the view that accreting T Tauri stars
have reached a rotational equilibrium under which their angular
velocity does not change with time. In other words, this “equi-

Bouvier et al. (1997)

peak at 6 - 8 d, 
but range 4 - 16 d



Contraction

Bouvier et al. (1997), based on the isochrones of Forestini (1994)

As the star contracts, it must spin up unless it 
has a way of loosing angular momentum.

Contraction is the dominant factor in angular 
momentum evolution on the pre-main sequence 
once the connection with the disk is broken

Contraction stops once the star reaches the 
ZAMS (about 100 Myr for solar mass stars)
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Angular momentum loss 
through a magnetised wind

solid line, that has ur = 0 at the surface of the star and is supersonic at large
distances. There are actually three critical points in the magnetized case, and
the physically acceptable wind solution passes through all of them.

6.4 Magnetic braking

Stars like the Sun are thought to be rapidly rotating when they first form, and
to lose most of their angular momentum through magnetic braking by a stellar
wind. The solar wind, and the stellar wind from other stars similar to the Sun,
results from the heating of the corona. The hot gas cannot radiate away its
energy fast enough, and the input of energy is balance by adiabatic losses and
outward transport in a continuously expanding corona.

!

B

u

rA

Figure 6.3: The drawing out of a magnetic field line by the solar wind, with
radial velocity u, is illustrated schematically. The distance rA is that at which
the solar wind speed equals the Alfvén speed.

Near the Sun, the expansion speed is low, and as the density falls off the
radial component vr of the expansion speed increases rapidly to maintain a
constant rate of mass loss with radius, that is, Ṁ = 4πr2ηvr independent of r.
Near the Earth, the flow speed is known to be superalfvénic, vr ≈ 500 km s−1,
which is two to three times vA. The Alfvén radius, rA, where the flow speed
passes through the Alfvén speed, is thought to occur at rA = 10–20R∗, as
illustrated in Figure 6.3. The solar wind carries away angular momentum, and
the amount of angular momentum carried away is strongly dependent on the
magnetic field.

To understand the effect of the magnetic field, suppose that the solar wind
were unmagnetized. Then it would carry off angular momentum at the rate,
ṀΩR2

∗, which is determined by the angular momentum per unit mass of the
wind as it leaves the solar surface. For the actual value of Ṁ , this rate is too
small to lead to any significant reduction of the angular momentum of the Sun
in its life time on the main sequence. Now consider a magnetized wind, for
which the angular momentum loss rate is ṀΩr2

A, and so is larger than for an
unmagnetized wind by the factor r2

A/R2
∗ ∼ 102–103. This does allow a solar-

like star to slow down significantly in its life time. The Sun appears to have

5

taken from D. Melrose’s lecture notes, U. Sydney

Magnetic field lines connecting to the stellar surface expand beyond the 
Alfven radius, where the wind speed approximates the escape velocity. The 
wind must therefore carry away angular momentum.

First introduced by Weber & Davis (1967) for the solar case

Observational evidence for Sun-like stars:  Prot ∝ t1/2 (Skumanich 1972).



Effect of disk lifetime 
and initial rotation rate
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Fig. 5. Rotational tracks (ωsat = 14Ω!) for 1 M! stars with initial
periods of 4, 8, and 16 days, respectively. For each initial period, two
tracks are shown corresponding to short- and long-lived disks respec-
tively. Since the initial periods shown in this figure encompass most of
the range allowed by the gaussian period distribution used in the model,
the upper track (shortest initial period, short-lived disk) illustrates the
upper envelope of the rotational evolution of 1 M! stars, and the lower
track (longest initial period, long-lived disk) the lower envelope.

PMS stars are prevented to spin up on their convective tracks.
As long as the star-disk coupling is instrumental, the star main-
tains roughly constant angular velocity. Then, the disk braking
timescale is equal to the contraction timescale. It is seen from
Fig. 6 that the disk braking timescale is much shorter than the
wind braking timescale during all the PMS evolution. We there-
fore neglected wind braking whenever disk braking is active,
i.e., as long as the stars are coupled to their disk.

The spin-down timescale of fast rotators on the ZAMS is
very sensitive to the value of the velocity at which dynamo sat-
uration occurs, ωsat. The reason is twofold and is illustrated
in Fig. 7 where rotational tracks are shown for ωsat of 10Ω!
and 14Ω!, respectively. Firstly, because saturated J losses are
proportional to ω2

sat, a lower value of ωsat leads to less efficient
braking. This is true during the PMS evolution, and the star will
thus reach a higher peak velocity at the ZAMS, and is also true
on the ZAMS, so that the star will take more time to spin down.
Secondly, the lower the value of ωsat, the longer the time spent
into the saturated J loss regime. These 2 effects thus concur to
lengthen the spin down timescale of fast rotators on the ZAMS
as ωsat decreases. Fig. 7 shows that all stars have converged
down to low velocities by an age of 200 Myr for ωsat = 14Ω!,
while the convergence does not occur before at least 400 Myr for
ωsat = 10Ω!. Then, the value of ωsat will be best constrained
by the observed spin down rate on the early ZAMS (between
the 50 Myr Alpha Persei and the 80 Myr Pleiades clusters) and,
even more, by clusters whose age is intermediate between that

Fig. 6. Timescales for PMS contraction τI , wind braking τJ , and nu-
clear evolution on the main sequence τnuc (1M! stars). The braking
timescale (1/J dJ/dt)−1 is shown for slow rotators (τdisk = 30 Myr,
upper solid curve) and fast ones (τdisk = 0.4 Myr, lower solid curve),
whose rotational tracks are plotted in Fig. 4 (lower and upper tracks,
respectively). The contraction timescale (1/I dI/dt)−1 (dashed curve)
remains very short compared to the braking timescale for most of the
PMS evolution, so that braking cannot prevent the stars from spin-
ning up as they contract toward the ZAMS. Over the first few Gyr on
the main sequence, the braking timescale is shorter than both the con-
traction and nuclear timescales (1/[H] d[H]/dt)−1), and stars are then
efficiently braked.

of the Pleiades (80 Myr) and that of the Hyades (600 Myr). Such
intermediate-age clusters will precisely indicate when the con-
vergence of rotation rates is completed on the main sequence
(e.g., M34, M7, see below).

In summary, the central parameter for the evolution of an-
gular momentum during the PMS is the distribution of disk
lifetimes, which largely dictates the velocity distribution at the
ZAMS. The critical parameter for ZAMS and early MS rota-
tional evolution is the value of ωsat at which J losses saturate.
However, these 2 adjustable parameters of the model are not
separable. Varying one or the other impacts on both the PMS
and the MS evolution of surface rotation. This is why the evo-
lution of surface rotation has to be modeled consistently all the
way from the T Tauri phase to the age of the Sun. Modeling
only part of it (e.g., the PMS contraction phase, or the ZAMS
spin down phase) does not account for the wealth of constraints
now available from the observations of PMS, ZAMS and MS
stars.

5. Observational constraints

In the previous sections, some observational constraints were
already included into the model to define boundary conditions.
This is the case of the distribution of rotational periods of clas-

Degeneracy  between inital conditions and disk lifetimes persists until several 
100 Myr after ZAMS



Problems - I
Rapid spin-down on ZAMS



Problems - II
Mass dependence of spin-down rate on ZAMS



Fixes - I
Solid body wind-breaking with saturation

R!B ∝ Ω
a

Feedback
dJ

dt
∝

(

rA

R!

)nInfluence of 
geometry

Skumanich law recovered for n=1.5 (intermediate between radial and 
dipolar field), a=1 (linear dynamo)

More sophisticated wind-breaking prescription (Bouvier et al. 1997)
Ω(r) = Ω(R!)Solid-body

Saturation: becomes less efficient for very fast rotators, with a mass-
dependent saturation rate



Fixes - II
Core-envelope decoupling

All the AM loss goes into slowing the envelope rather than the whole star

Coupling timescale depends on mass (low mass stars remain fully 
convective

J. Bouvier et al.: Angular momentum evolution of low-mass stars 1039

AP Pl.

Fig. 15. Surface and core velocity of 1M! slow rotators with and with-
out core-envelope decoupling. The core-envelope coupling timescales
(τc) are 106 yr (equivalent to solid-body rotation, solid line), 2 107

yr (dotted line), and 5 108 yr (short dashed line). Two disk lifetimes
are illustrated: 10 Myr (top panel) and 30 Myr (lower panel). The
long-dashed curves show the velocity of the core for core-envelope
coupling timescales of 5 108 yr. All models were calibrated so as to
reproduce the solar rotational velocity at the age of the Sun (Allain, in
prep.). The calibration varies with τc but is independent of τdisk. For a
disk lifetime of 10 Myr, DR models with τc of 10 Myr predict slightly
lower velocities than SB models on the ZAMS. For a disk lifetime of
30 Myr, DR models with τc of 10 Myr predict higher velocities than SB
models at the age of the young clusters as angular momentum tapped
into the inner radiative core resurfaces. By increasing τc up to a few
108 yr, very slow surface velocities are reached on the ZAMS but the
radiative core remains in rapid rotation past the age of the Sun.

has a low moment of inertia compared to the entire star, has to
be braked (τJ ∝ Iconv << Itot). At the other extreme, solid-
body rotation implies a perfect dynamical coupling between the
convective envelope and the radiative core, so that the entire star
has to be braked, which happens on a longer timescale. Hence,
the timescale for braking the stellar surface is longer for solid-
body rotation (SB) models than for differential rotation (DR)
ones. Consequently, in order to reproduce the slow rotators on
the ZAMS, SB models ought to require longer disk lifetimes, so
that the duration of the pre-ZAMS spin up phase is shortened,
thus compensating for the lesser efficiency of the wind braking
compared to DR models.

It must be stressed, however, that partial decoupling between
the radiative core and the convective envelope does not actually
allow for a substantial reduction of disk lifetimes unless the cou-
pling timescale between the core and the envelope is assumed
to be very long (>> 10 Myr). For instance, Keppens et al.’s
(1995) model assumes a core-envelope coupling timescale of
10 Myr. With maximum disk lifetimes of 6 Myr, they find that
no slow rotators (vsini ≤ 10 km s−1) are predicted at an age of

50 Myr. In order to account for the slow rotators at this age, their
model would have to include longer disk lifetimes, not very dif-
ferent from those assumed by SB models. This occurs because,
even though the braking of surface layers is more efficient, the
relative reduction of the moment of inertia of the convective
envelope alone is larger than that of the whole star just before
the ZAMS (see Keppens et al.’s Fig. 2). As a result, the decou-
pled convective envelope tends to spin up faster than the whole
star just before reaching the ZAMS. More importantly, because
the core-envelope coupling timescale is of the order of the con-
traction timescale to the ZAMS (10–20 and 30–40 Myr, respec-
tively), significant amount of angular momentum tapped into
the radiative core is transported to the envelope before the star
reaches the age of the Pleiades. These two effects are illustrated
in Fig. 15 where we compare slowly-rotating 1M" models for
solid-body rotators to models with core-envelope decoupling
following Keppens et al.’s prescription for angular momentum
transfer between the core and the envelope (Allain, in prep.).
It is seen that unless the timescale for core-envelope coupling
becomes very long (>> 107 yr), DR and SB models predict
roughly similar velocities at an age of 30–80 Myr. For a τdisk
of 10 Myr, DR models with a τc of 20 Myr predict rotational
velocities of 15 km s−1 at the age of the Pleiades, compared to
18 km s−1 for SB models. Only very long coupling timescales
between the core and the envelope (# 100 Myr, e.g., Krish-
namurthi et al. 1997) would produce very slow rotators with
significantly shorter disk lifetimes. While this might well be the
case for very slow rotators in young clusters, such a long cou-
pling timescale fails to reproduce the ultrafast rotators, as the
convective envelope is very efficiently braked before the stars
reach the ZAMS (see Charbonneau et al. 1995), and also still
exhibit significant differential rotation at the age of the Sun,
which conflicts with the results from helioseismology.

Originally, the core-envelope decoupling assumption was
called upon in order to account for i) the rapid spin down of fast
rotators on the ZAMS (Endal & Sofia 1981) and ii) the mass-
dependence of the ZAMS spin down timescale, being longer
for lower mass stars (Stauffer et al. 1985). The results obtained
from the SB models above show that these two characteristic
features of the rotational evolution of low-mass stars may have
other causes. The rapid spin down of fast rotators on the ZAMS
does not require the core-envelope decoupling hypothesis. In-
stead, the fast spin down of the whole star in SB models occurs
at a rate consistent with the observations solely on the basis of
the adopted braking law. And the longer spin down timescale
for lower mass stars in the SB models is explained by the mass-
dependent saturation of the angular momentum losses, which
occurs at lower velocities for lower mass stars, as suggested
earlier by Collier Cameron & Li (1994). This mass-dependency
is expected on a physical basis in the framework of the α − ω
dynamo model. The amplification of seed magnetic fields by
the dynamo process scales as the inverse of the Rossby number,
R−1
o ∝ ωτconv, where τconv is the convective turnover time.

Assuming that the saturation of the angular momentum losses
is a direct consequence of the saturation of the dynamo itself,
it is expected to occur at a fixed R−1

o for all masses. There-

Both approaches can predict similar rotation rates at a given age

Both still have problems
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disk lifetime, set to 40 Myr here (all stars are coupled to their
disk at tbl, and none at tf ). The term g(t) is an apodizing function
which ensures that fτdisk (tf ) = 0.

The integration of this distribution over time yields the frac-
tion of stars which remain coupled to their disk up to a given
age:

Ndisk

Ntot
(t) = 1−

∫ t

tbl

fτdisk (τdisk)dτdisk ≤ 1− log t− log tbl
log tf − log tbl

where the ≤ sign arises from the apodizing function included
in fτdisk (t). For 0.8M! models (log tbl # 5.5), the fraction
Ndisk/Ntot(t) amounts to 100% at 0.3 Myr, 50% at 3 Myr, 20%
at 10 Myr, and 10% at 20 Myr. No disk remains beyond 40 Myr.
These numbers are consistent with the upper bounds of the esti-
mates of disk frequency among PMS stars drawn from IR excess
surveys.

We emphasize again that Ndisk/Ntot(t) represents the frac-
tion of stars surrounded by disks that sustain mass-accretion at
a large enough rate as to lock the central star at constant angu-
lar velocity (H2). According to Cameron & Campbell (1993),
once the rotational equilibrium is reached early in the star’s
evolution, it remains instrumental until the mass-accretion has
dwindled to values as low as a few 10−11M!yr−1. At such a
low accretion rate, the disk is completely optically thin and the
system may have spectral properties similar to those of WTTS
(Strom et al. 1993, Hartigan et al. 1995). In other words, the disk
frequency estimates based on the statistics of near-IR excesses
merely provides a lower limit to the fraction of stars that may
actually be coupled to their (optically thin) disk (Armitage &
Clarke 1996). We return to the plausibility of long-lived disks
in the discussion.

4. Effect of the parameters

The angular momentum evolution of a given star depends upon
its initial angular momentum (Ωo), the lifetime of its disk (τdisk)
and the wind braking it experiences (ωsat). We describe here
how each of these parameters affect the rotational evolution.

Fig. 4 shows a grid of rotational tracks, Ω(t), for the 1M!
model. The grid is computed for an initial velocity Ω = 3Ω!,
which corresponds to an initial period of 8d, and for several disk
lifetimes ranging from 0.4 Myr to 30 Myr. The observational
data superimposed on the tracks for reference are discussed in
the next section. This figure clearly illustrates how the stellar
velocity on the ZAMS is related to the disk lifetime. Angular
velocities up to 100Ω! and more are reached by the age of
young clusters when the disk dissipates very early in the star’s
PMS evolution (τdisk ≤ 1 Myr) while velocities of the order
of 5Ω! result from the longest τdisk (≥ 10 Myr). Hence, to
a large extent, τdisk dictates the angular velocity the star has
as it settles on the ZAMS. The velocity at ZAMS also depends,
albeit to a lower extent, upon the initial velocity. This is shown in
Fig. 5 where rotational tracks are shown for 3 initial velocities
which span most of the range allowed by the distribution of
initial periods. For short τdisk, stars with high initial angular
momentum reach the ZAMS as ultrafast rotators while those

Fig. 4. Grid of rotational tracks for 1 M! stars (Po = 8d,ωsat = 14Ω!).
The upper track depicts the evolution of surface rotation for stars with
short disk lifetimes (τdisk = 0.4 Myr) and the lower one for stars with
long-lived disks (τdisk = 30 Myr). Note how sensitive is the peak ve-
locity on the ZAMS to the disk lifetime. For reference, observed an-
gular velocities (computed from periods or projected linear velocities)
are shown for low-mass T Tauri stars (≤1–5 Myr), post-T Tauri stars
(5–20 Myr), and G-type members of the IC 2602 (30 Myr), IC 2391
(30 Myr), Alpha Persei (50 Myr), Pleiades (80 Myr), M34 (225 Myr),
M7 (225 Myr) and Hyades clusters (600 Myr), and the Sun (see Ap-
pendix). The groups of stars in young clusters shown at Ω/Ω! ≤ 5
have vsini upper limits of 7 to 10 km s−1.

with initally low angular momentum are more moderate rotators
on the ZAMS. For long τdisk, stars with low initial angular
momentum reach the ZAMS as ultraslow rotators.

The evolution of rotation during PMS contraction is hardly
affected by wind braking. The reason is that the wind braking
timescale is much longer than the contraction timescale for most
of the PMS evolution. This is shown in Fig. 6 where various
relevant timescales are compared. The contraction timescale is
orders of magnitude shorter than the braking timescale up to
an age of about 20 Myr. Hence, wind braking cannot prevent
the star to spin up as it contracts towards the ZAMS. As the
star approaches the ZAMS, however, the contraction timescale
rapidly lengthens and eventually, at an age of about 30 Myr,
becomes comparable to the braking timescale for fast rotators.
As a result, stars begin to spin down as soon as they settle on
the ZAMS (and, in fact, slightly earlier). For fast rotators (Ω #
100Ω!), the braking timescale is then quite short (# 50 Myr),
and they are quickly spun down on the ZAMS. For slow rotators
(Ω # 5Ω!), however, the braking timescale is of the order of
1 Gyr, and they spin down at a much slower pace on the main
sequence.

It is precisely because wind braking is ineffective during
PMS evolution that disk braking, through the magnetic star-
disk interaction, has to be called upon to understand how some

In the TTauri phase, examine link 
between rotation and presence of disks

Will also reach down to the BD 
regime, where the star-disk connection 
may be altered

Will cover in detail the ZAMS phase, 
which is crucial for constraining spin-
down models

Monitor target clusters cover the 
entire evolutionary sequence up to the 
early MS



Monitor periods
• Photometric monitoring in I (+ V) from 2 - 4m telescopes

• Two types of time sampling:

• classical scheduling: runs of ~ 10 nights, tightly sampled (3.5 to 8 min), 
repeated after a few months (up to 1 yr)

• queue scheduling: blocks of 1-2h, sampling 15min, spread throughout 
semester

• Automated light curve production using list-driven aperture photometry

• Photometric precision < 1% over > 4 magnitudes

• Membership selection from deep optical CMDs or previously published data

• Period detection via sine-fitting

• Completeness and reliability estimated by injecting sinusoids into real, non-
variable light curves



Candidate members in M34 with rotation periods



Some cautions

• I am going to show some very preliminary results

• M34 has been analysed in detail (Irwin et al. in prep.). For 
anything else:

• Don’t trust period determinations above 10 days or 
below 0.3 days

• Contamination from field variables is expected to be 
high (except in ONC where we used Hillenbrand 1997 
catalogue)



Consistent with 
framework of Barnes 
et al. (2003)

slow rotators

fast rotators

transition objects

only one population 
at low masses



ZAMS age increases 
with decreasing mass

Disk locking less 
efficient or less long-
lived at lower masses?

Gradual disappearance 
of fast rotators in 
highest mass bin

Investigate rate of spin 
down as function of mass

MEDIAN

Really need lower 
mass objects in post- 
ZAMS phase



Rapid spin-down 
even for slow 
rotators on early 
ZAMS

Some objects may be 
close to break up 
(but beware of 
contamination by W Uma’s)

90%ile

10%ile

Does the rapid 
rotator population 
persist longer after 
ZAMS at low masses?



Conclusions

• We have determined rotation periods for an unprecedented sample of young 
stars with known masses & ages, covering:

• the entire TTauri, PMS and early MS phase

• solar to brown dwarf masses

• We need to improve membership selection and check the period 
determinations in some of our clusters but we can already say:

• the global observed picture fits well with the current paradigm on AM 
evolution of young stars as described in the introduction

• evidence of two distinct populations at high masses but only one at low 
masses 

• ultra-fast rotators?

• even slow rotators spin down fast on the ZAMS



Future prospects

• Improved membership lists (near IR CMDs, other teams 
obtaining spectra)

• Additional photometric monitoring data (repeat, other 
clusters, fainter in M34)

• Spot properties (temperature, area)

• Completeness / reliability corrected period distributions in 
each mass bin

• Spectroscopic follow-up of stars with periods (better mass 
and membership, accretion, v sin i, age, binarity)


